First-Generation

TMS320
User’s Guide

*ip
TeExas
INSTRUMENTS



IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes in the devices or the
device specifications identified in this publication without notice. Tl advises
its customers to obtain the latest version of device specifications to verify,
before placing orders, that the information being relied upon by the customer
is current.

In the absence of written agreement to the contrary, Tl assumes no liability for
T1 applications assistance, customer’s product design, or infringement of pat-
ents or copyrights of third parties by or arising from use of semiconductor
devices described herein. Nor does Tl warrant or represent that any license,
either express or implied, is granted under any patent right, copyright, or other
intellectual property right of Tl covering or relating to any combination, ma-
chine, or process in which such semiconductor devices might be or are used.

Copyright © 1988, Texas Instruments Incorporated
Dépot Iégal = Janvier 1988
ISBN 2-86886-024-9
Printed in France



ELECTRONIC PRODUCTS 1983
PRODUCT OF THE YEAR AWARD
TMS320 DIGITAL SIGNAL PROCESSOR

TEXAS INSTRUMENTS

o
R

S

M
(M)
g8g8g848

s}t}g"
s






Contents

Section Page
1 Introduction 11
1.1 General Description . . . . . . . ... ... ... 1-3
1.2 KeyFeatures . . . . . .. . . ... ... 1-6
1.3 Typical Applications . . . . . . . . ... ... 1-6
1.4 HowToUse ThisManual . ... ... ................... 1-7
1.5 References .. ....... S 1-9
2 Pinouts and Signal Descriptions 2-1
21 TMS320CIx Pinouts . . . . . . . . . ... 2-2
2.2 TMS32010/C10/C15/E15 Signal Descriptions . . . . . .. ... ... .. 2-3
2.3 TMS320C17/E17 Signal Descriptions . . . . . . . .. ... ... ..... 2-5
3 Architecture 3-1
3.1 Architectural Overview . . . . . . .. ... ... .. ... .. ...... .32
3.2 Functional Block Diagrams . . . . . . . ... ... ............. 3-4
3.3 Internal Hardware Summary . . . . . . . ... ... 3-7
3.4 Memory Organization . . . . . . ... .. ... ... ... ... ... ... 3-10
341 DataMemory . . . . . . . . . . ... ... 3-10
3.4.2 Program Memory . . . . . . . . ... 3-11
343 DataMovement . . . . . . . ... ... ... ... ... 3-13
344 MemoryMaps . . . . . . ... .. 3-13
345 Auxiliary Registers . . . . . .. ... L 3-14
3.4.6 Memory Addressing Modes . . . . .. ... .......... ... 3-16
3.5 Central Arithmetic Logic Unit (CALU) . . . . . . . ... . ... ...... 3-17
351 Shifters . . . . ... 3-18
352 ALU and Accumulator . . . . ... 3-19
353 Multiplier, Tand P Registers . . . . . . .. ... ... ......... 3-21
3.6 SystemControl . . . ... ... ... 3-22
3.6.1 Program Counterand Stack . . . . . ... ... ... ... ...... 3-22
36.2 Reset . . . . . . . . .. 3-24
3.6.3 Status Register . . . . . . . ... ..., 3-25
3.7 Input/Output Functions . . . . . . . . . . . . ... 3-27
3.71 Input/Output Operation . . . . . . .. .. ... ... ......... 3-28
3.7.2 Table Read/Table Write Operation . . . . . ... ... ......... 3-30
3.7.3 General-Purpose /0 Pins (BIO and XFY 3-31
38 Interrupts . . . . . ... L 3-32
3.9 Serial Port (TMS320C17/E17) . . . . . . . . . . . i 3-36
391 Receive Registers . . . . . . . .. .. ... ... ... ... 3-37
39.2 Transmit Registers . . . . . . . . . ... ... 3-39
393 Timing and Framing Control . . . . . . .. . ... .. ... ...... 3-40
3.10 Companding Hardware (TMS320C17/E17) . . . . . ... .. .. . .... 3-42
3.101 u-Law/A-Law Encoder . . . . . . . ... 3-43
3.10.2 up-Law/A-Law Decoder . . . . . . . . .. ... ... ... 3-44
3.11 Coprocessor Port (TMS320C17/E17) . . . . . . . . . . . . ... .. ... 3-45
3.12 System Control Register (TMS320C17/E17) . . . . . . . . . . . . . ... 3-47



4.1

411
41.2
413

421
422
4.3

5.1
51.1
51.2

5.21
5.2.2
5.2.3
5.2.4

5.3.1
5.3.2
5.3.3
534
5.4

5.4.1
54.2

5.5.1
552
553
554
555
5.5.6
5.5.7
5.5.8

5.6.1
5.6.2
5.6.3
5.6.4
5.6.5
5.6.6

vi

Assembly Language Instructions
Memory Addressing Modes . . . . . . ... Lo

4-1
4-2
Direct Addressing Mode . . . . . . . .. ..o 4-2
Indirect Addressing Mode . . . . . . .. ... Lo 4-4
Immediate Addressing Mode . . . . . .. ..o oo 4-5
Instruction Set . . . . . ... L e e - 4-7
Symbols and Abbreviations . . . . . ... ... L 0oL 4-7
Instruction Set Summary . . . . . . ..o 4-8
Individual Instruction Descriptions . . . . . . . . ... ... L 4-11
Software Applications 5-1
Processor Initialization . . . . . . . . . . . ... oo 5-2
TMS32010/C10/C15 Initialization . . . . . . . . . ... ... ..... 5-2
TMS320C17 Initialization . . . . . . . . . . . . 5-3
Interrupt Management . . . . . . . ... Lo 5-7
TMS32010/C10/C15 Interrupt Service Routines . . . . . . ... ... 5-7
TMS320C17 Interrupt Service Routines . . . . . . ... ... ... .. 5-10
BIOPolling . . ... . . . . e 5-12
Context Switching . . . . . . . . . .. ... Lo 5-12
Program Control . . . . . . . . . . ... e 5-16
Software Stack Expansion . . . . . . . . ... 5-16
Subroutine Calls . . . . . . . . . . . . .. 5-17
Addressing and Loop Control with Auxiliary Registers . . . . . . . .. 5-19
Computed GOTOs . . . . . . . . . . . . . e 5-21
Memory Management . . . . . . ... L. L e e 5-23
Moving Data . . . . . . . . . .. .. 5-23
Moving Constants into Data Memory . . . . . . . ... .. ... ... 5-25
Logical and Arithmetic Operations . . . . . . . . . . . . ... .. ..... 5-29
Bit Manipulation . . . . . . ... 5-29
Overflow Management . . . . . . . . . . . .. ... ... ... 5-30
Scaling . . . . . e 5-31
Convolution Operations . . . . . . . . . . . . e 5-32
Multiplication . . . . . . . . ..o 5-33
Division . . . . . . e e e 5-36
Addition . . . .. e 5-39
Floating-Point Arithmetic . . . . . . . . . . . . .. ... .. ..., 5-40
Application-Oriented Operations . . . . . . . . . . . ... ... ...... 5-42
Companding . . . . . . . . ... 5-42
FIR/UR Filtering . . . . . . . . . . . it i e 5-44
Adaptive Filtering . . . . . . . .. ..o 5-45
Fast Fourier Transforms (FFT) . . . . . . . . .. .. .. ... ... .. 5-48
PID Control . . . . . . . . . e 5-53
Selftest Routines . . . . . . . . . . ..o 5-54



LYY T
OO NTHWN = -
oo .

wWN =

OMMOopO®m>

Hardware Applications 6
Expansion Memory Interface . . . . ... ... . ... .. . . .. .. . 6
Program ROM Expansion . . . . . ... ... ... ... .. ... . . 6-2
Data RAM Expansion. 6
Codec Interface . . . ... .. ....... . . 6
A/D and D/A Interface 6

I/OPorts . . ... .. 6-10
Coprocessor Interface . . . . . ... ... .. ... . .. ... .. . 6-11
System Applications . . . .. ... .. ... ... ... ... 6-13
2400 bps Modem . . . . . ... 6-13
Speech Synthesis System . . . . ... ... .. ... .. ... 6-14
Voice Store-and-Forward Message Center . . . . . . .. .. .. ... . 6-15
First-Generation TMS320 Data Sheet A-1
SMJ32010/C10 Data Sheets B-1
ROM Codes C-1
Quality and Reliability D-1
Development Support/Part Order Information E-1
Memories, Peripherals, and Sockets F-1
Programming the TMS320E15/E17 EPROM Cell G-1

vii



iHHustrations

Figure

1-1.  TMS320 Device Evolution ... ... ... .. .. . i,
2-1. TMS320C1x Pin Assignments . ............... .0 iiiiiiienninnnn..
3-1. TMS32010/C10/C15/E15 Block Diagram ... ......................
3-2. TMS320C17/E17 Block Diagram . . . ........... ... iiviinnennn...
3-3. On-Chip Data Memory ........... ... ..
3-4. External Program Memory Expansion Example ......................
3-5. Memory Maps for the TMS32010/C10 .. ... ... ... . . ...
3-6. Memory Maps for the TMS320C15/E15 and TMS320C17/E17 ........
3-7. Auxiliary Register Counter ............ ...t
3-8. Indirect Addressing Autoincrement . ............. ... ... ... ...,
3-9. Indirect Addressing Autodecrement . ............... ... .. .. ... ...
3-10. Methods of Instruction Operand Addressing . ......................
3-11. Central Arithmetic Logic Unit (CALU)  ............ . ... ... .......
3-12. Harvard Architecture . ........... ...
3-13. Status Register Organization ............................ e
3-14. TMS320C1x External Device Interface  ............................
3-15. Inputinstruction Timing . .............. .. ... . ..
3-16. OutputInstruction Timing  ......... ... ... ... ... ...
3-17. TBLR Instruction Timing ....... e
3-18. TBLW Instruction Timing  ................... .. ... ...
3-19. TMS320C1x Simplified Interrupt Logic Diagram  ....................
3-20. Interrupt Timing .. ... ... e
3-21. Interrupt Latch and Multiplexer ............ ... ... ... .. .........
3-22. Serial Port and Companding Hardware . ...........................
3-23. Receive Timing for External Framing ..............................
3-24. Fixed-Data Rate for Internal Framing  .............................
3-25. Variable-Data Rate for Internal Framing . ..........................
3-26. Transmit Timing for External Framing .............................
3-27. Serial-Port Timing and Framing Control . ..........................
3-28. External Write Timing to the Coprocessor Port .. ....................
3-29. External Read Timing from the Coprocessor Port . ...................
3-30. System Control Register .. ........... ... . . . . . ..
4-1. Direct Addressing Block Diagram  ............. . ... ... ... ... .. ....
5-1. Long Division and SUBC Division  ........... .. ... .. ... ...
6-1. Minimum Program ROM Expansion ..............................
6-2. EPROM Interface to the TMS32010-16 . ........ ...ttt
6-3. Data RAM Expansion . ... ... e
6-4. Codec Interface for Standalone Serial Operation .. ..................
6-5. A/D Converter to TMS320C10/C15 Interfface  ......................
6-6. D/A Converter to TMS320C10/C15 Interface ... ...................
6-7. 1/0 Portinterface Circuit . ....... ... ... . . . . . . ... ..
6-8. TMS320C17 to TMS70C42 Interface .. .............. ... . .c........
6-9. TMS320C17 to TMS320C25 Interface .. .......... .. .. .. ..........
6-10. 2400 bps Modem .. ... ...
6-11. Speech Synthesis System ... ........ ... ... .. . . .. .. ..
6-12. Answering Machine ... ... ... ... .. ..
C-1. TMS320C1x ROM Code Flowchart . .............................
E-1. TMS320C1x Development Tools  .......... .. ... ............... o
E-2. TMS320C1x EVM/Single-User System ... ........................

viii



TMS320C1x XDS/22 System Configuration ..................... ...
- TMS320 AIB System Configuration ..............................
TMS320 Device Nomenclature

SoONAW

Fast Programming Timing  ................... ... uui .. .
ROM Protect Flowchart  .............. ... ... ... .. .. ... .. . .. ..
ROM Protect Timing  ................. .

OOOOOOTMMMmMm
oobwn -

Table

TMS320C1x Processors Overview — ................. .. .. ... ... ..
Typical Applications of the TMS320 Family .............. ... ... ... .
TMS32010/C10/C15/E15 Signal Descriptions  .....................
TMS320C17/E17 Signal Descriptions . . . ..............cooo ..
TMS320C1x Internal Hardware . ................... .. .. .. .. ... .
Accumulator Results of a Logical Operation .. .................... ..
Status Register Field Definitions . ................ ... S
Serial Clock (SCLK) Divide Ratios (X2/CLKIN = 20.48 MHz) ... ..
Serial- and Parallel-Mode Bit Configurations . ..................... .
Control Register Bit Definitions  ...................... . ... . ... ...
Instruction Symbols . ... ...

SWNSLLNANSOORONSRSNS

TO0OERWWWWWWNN= =

TMS320C1x Support Tool Part Numbers . . ... e
Development Tool Connections to a Target System ... ............. ..
Commonly Used Crystal Frequencies  ................ ... ...... ...

ooTmmmm
N =
_'
<
w
w
N
o
m
—
o
~
m
-
~
v
<
o
~
©
o
L d
[+})
3
Qa
<
®
2
2.
<
o
(@)
<
<
o
Q
®
-
@
<
@
w






1.

Iintroduction

PERFORMANCE

The TMS320 family of 16/32-bit single-chip digital signal processors com-
bines the flexibility of a high-speed controller with the numerical capability of
an array processor, offering an inexpensive alternative to custom VLS| and
multichip bit-slice processors.

The TMS32010, the first digital signal processor in the TMS320 family, was
introduced in 1983. During that year, the TMS32010 was named "Product
of the Year” by the magazine, Electronic Products. Its powerful instruction set,
inherent flexibility, high-speed number-crunching capabilities, and innovative
architecture have made this high-performance, cost-effective processor the
ideal solution to many telecommunications, computer, commercial, industrial,
and military applications.

The TMS320 family has now expanded into three generations of processors:
TMS320C1x, TMS320C2x, and TMS320C3x (see Figure 1-1). Many features
are common among these generations. Some specific features are added in
each processor to provide different cost/performance tradeoffs. Software
compatibility is maintained throughout the family to protect the user’s invest-
ment in architecture. Each processor has software and hardware tools to fa-
cilitate rapid design. ‘

2 timers
DMA

TMS320C3x
320C30 ® 32-bit float-pt CPU
® 60-ns instr cycle
TMS320C2x ® 2K WRAM
® 4K W ROM
32020 16/32-bit CPU ® 64 W instr cache
320C25 ® 100-ns instrcycle | ® 16M W total mem
544 W data RAM | ® 32%32=40-bit muit
TMS320C1x 4K W prog ROM o 2 serial ports
[ ]

16 x 16 = 32-bit mult
Serial port

32010
320C10

16/32-bit CPU
256 W data RAM

L]
°
°
°
® 128K W total mem
°
°
[
°

320C15 4K W ROM/EPROM Block move/repeat
Multiprocessor I/F

320C17 16 x 16 = 32-bit mult

320E17 2 serial ports

Companding H/W

®
[ ]
[ ]
320E15 @ 4K W ext prog mem
[ ]
[ ]
°
® Coprocessor |/F

1982 1985 1987

Figure 1-1. TMS320 Device Evolution
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Throughout this document, the first-generation device group within the
TMS320 family will be referred to as TMS320C1x. The specific members of
the first-generation TMS320 include:

TMS32010, the first 20-MHz digital signal processor
TMS32010-16, a 16- MHz version of the TMS32010
TMS32010-25, a 25-MHz version of the TMS32010
TMS320C10, a CMOS 20-MHz version of the TMS32010
TMS320C10-25, a 25-MHz version of the TMS320C10
TMS320C15, a TMS320C10 with expanded ROM and RAM
TMS320E15, an EPROM version of the TMS320C15
TMS320C15-25, a 25-MHz version of the TMS320C15
TMS320C17, a TMS320C15 with serial and coprocessor ports
TMS320E17, an EPROM version of the TMS320C17
TMS320C17-25, a 25-MHz version of the TMS320C17.

Plans for expansion of the TMS320 family include more spinoffs of the exist-

ing generations as well as more powerful future generations of digital signal
processors.

The TMS320 family combines the high performance and specialized features
necessary in digital signal processing (DSP) applications with an extensive
program of development support, including hardware and software develop-
ment products, product documentation, textbooks, newsletters, DSP design
workshops, and a variety of application reports. See Appendix E for a dis-
cussion of the wide range of development tools available.



Introduction - General Description

1.1 General Description

The combination of the TMS320's Harvard-type architecture (separate pro-
gram and data buses) and its special digital signal processing (DSP) instruc-
tion set provide speed and flexibility to produce a microprocessor family
capable of executing 6.25 MIPS (million instructions per second). The
TMS320 family optimizes speed by implementing functions in hardware that
other processors impiement through software or microcode. This hardware-
intensive approach provides the design engineer with power previously una-
vailable on a single chip.

Table 1-1 provides an overview of the TMS320C1x group of processors with

comparisons of technology, memory, 1/0, cycle timing, package type, and
military support.

Table 1-1. TMS320C1x Processors Overview

MEMORY 1/0*  [cYcLE|] PACKAGE
DEVICE TECH ON-CHIP OFF-CHIP TIME TYPE
RAM ROM EPROM PROG |SER PAR| (ns) |DIP PLCC
TMS32010-16 | NMOS | 144 15K - 4K - 8x16| 250 | 40 -
TMS32010t NMOS | 144 15K - 4K - 8x16| 200 | 40 -
TMS32010-25 | NMOS | 144 15K - 4K - 8xi6| 160 | 40 -
TMS32Q11 NMos | 144 15K - - 2 6x16| 200 | 40 -
TMS320C10t [ CMOS | 144 15K - 4K - 8x16| 200 | 40 44
TMS320C10-25| CMOS | 144 15K - 4K - 8x16| 160 | 40 44
TMS320C16¢ | CMOS [ 266 4K - 4K - 8x16| 200 |40 44
TMS320C16-25| CMOS | 256 4K - 4K - 8x16| 160 | 40 44
TMS320E15¢ | CMOS | 256 - 4K 4K - 8x16| 200 |40 -
TMS320C17 [ CMOS | 256 4K - - 2 6x16| 200 | 40 44
TMS320C17-25| CMOS | 256 4K - - 2 6x16| 160 | 40 44
TMS320E17 CMOS | 256 - 4K - 2 6x16| 200 | 40 -

*SER = serial; PAR = parallel.

tMilitary version available.
tMilitary versions planned; contact nearest sales office for availability.

The first generation of the TMS320 family includes the TMS32010,
TMS32010-16, TMS32010-25, processed in NMOS technology, and the
TMS320C10, TMS320C10-25, TMS320C15/E15, TMS320C15-25, TMS320C17/E17,
and TMS320C17-25, processed in CMOS technology.

The TMS32010, the first TMS320 family member, is a microprocessor capable
of achieving a 16 x 16-bit multiply in a single 200-ns cycle. On-chip data
memory of 144 words is available. Up to 4K words of off-chip program me-
mory can be executed at full speed. The TMS32010 is also available in a mi-
crocomputer version, with 1.6K words of on-chip program ROM and up to
2.5K words of off-chip program memory for a total of 4K words. This
ROM-code version can also operate entirely from off-chip ROM for ease of
prototyping, code update, and field upgradeability.

The TMS32010- 16, a 16 MHz version of the TMS32010, provides a low-cost
alternative for DSP applications not requiring the maximum operating fre-

1-3
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quency of the TMS32010. Some applications for which the TMS32010-16 is
well suited include servo control, high-speed controllers, low-end modems,
audio processing, data encryption, and vibration analysis. The device can ex-
ecute 4 million instructions per second and perform a 16 x 16-bit multiply
in 250 ns. The TMS32010-16 provides a direct EPROM interface for single-
cycle program memory access, thereby offering a cost-effective method for
system development and modification. The device is pin-for-pin and software
compatible with the higher-frequency, 20-MHz TMS32010 and its develop-
ment tools.

The TMS32010-25, a 160-ns instruction cycle time version of the
TMS32010, is intended for higher-performance applications that use off-chip
program memory and require 25 percent greater processor throughput-(6.25
million instructions per second) than the TMS32010. Existing TMS32010
designs can take advantage of the enhanced throughput simply by increasing
the input clock cycle time to 25 MHz without rewriting software.

The TMS320C10 has a 200-ns instruction cycle time and is object-code and
pin-for-pin compatible with the TMS$32010. The TMS320C10 is processed in
CMOS technolcgy, achieving a power dissipation less than one-sixth that of
the NMOS device. Because of its low-power dissipation (165 mW), the
TMS320C10 is ideal for power-sensitive applications such as digital tele-
phony and portable consumer products. A masked ROM option is available for
the TMS320C10.

The TMS320C10-25, a 25 MHz version of the TMS320C10, has a 160-ns
instruction cycle time. Its lower power and higher speed make it well suited
for high-performance DSP applications.

The TMS320C15 and TMS320E15 are fully object-code and pin-for-pin
compatible with the TMS32010 and offer expanded on-chip RAM of 256
words and on-chip program ROM (TMS320C15) or EPROM (TMS320E15)
of 4K words. The devices are processed in CMOS technology. The
TMS320C15 is also available in a 160-ns version, the TMS320C15-25.

The TMS320C17 and TMS320E17 are dedicated microcomputers with 256
words of on-chip RAM and 4K words of on-chip program ROM
(TMS320C17) or EPROM (TMS320E17). The TMS320C17/E17 features a
dual-channel serial interface, on-chip companding hardware (u-law/A-law),
a serial port timer, and a latched 16-bit coprocessor port for direct micro-
processor 1/0 interface. The devices are object-code compatible with the
TMS32010, and processed in CMOS technology. The TMS320C17 is also
available in a 160-ns version, the TMS320C17-25.
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1.2 Key Features

Some of the key features of the TMS320C1x devices are listed below. Specific
devices for a particular feature are enclosed in parentheses.

® Instruction cycle timing:
- 160 ns (TMS32010-25/C10-25/C15-25/C17-25)
- 200 ns (TMS32010/C10/C15/E15/C17/E17)
- 250 ns (TMS32010-16)

144/256-word on-chip data RAM

1.5K/4K-word on-chip program ROM

4K-word on-chip program EPROM (TMS320E15/E17)
EPROM code protection for copyright security

4K-word total external memory at full speed

16-bit bidirectional data bus at 50-Mbps transfer rate
32-bit ALU/accumulator

16 x 16-bit parallel multiplier with a 32-bit product

0 to 16-bit barrel shifter

On-chip clock generator

Eight input and eight output channels

Dual-channel serial port with timer (TMS320C17/E17)
Direct interface to combo-codecs (TMS320C17/E17)
On-chip p-law/A-law companding hardware (TMS320C17/E17)
16-bit coprocessor interface (TMS320C17/E17)

Single 5-V supply

Device packaging:

- 40-pin DIP (TMS32010/C10/C15/E15/C17/E17)

- 44-lead PLCC (TMS320C10; available in 1988 for the
TMS320C15/C17)

® Technology:
- NMOS (TMS32010)
- CMOS (TMS320C10/C15/E15/C17/E17)

(] Commercial and military versions available.

1-5
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1.3 Typical Applications

The TMS320 family’s unique versatility and realtime performance offer flexible
design approaches in a variety of applications. In addition, TMS320 devices
can simultaneously provide the multiple functions often required in those
complex applications. Table 1-2 lists typical TMS320 family applications.

Table 1-2. Typical Applications of the TMS320 Family

Hilbert Transforms

Fast Fourier Transforms
Adaptive Filtering
Windowing -

GENERAL-PURPOSE DSP GRAPHICS/IMAGING INSTRUMENTATION
Digital Filtering 3-D Rotation Spectrum Analysis
Convolution Robot Vision Function Generation
Correlation Image Transmission/ Pattern Matching

Compression

Pattern Recognition
Image Enhancement
Homomorphic Processing

Seismic Processing
Transient Analysis
Digital Filtering
Phase-Locked Loops

Speech Vocoding
Speech Recognition
Speaker Verification
Speech Enhancement
Speech Synthesis
Text-to-Speech

Waveform Generation Workstations
Animation/Digital Map
VOICE/SPEECH CONTROL MILITARY
Voice Mail Disk Control Secure Communications

Servo Control

Robot Control

Laser Printer Control
Engine Control
Motor Control

Radar Processing

Sonar Processing

Image Processing
Navigation

Missile Guidance

Radio Frequency Modems

TELECOMMUNICATIONS

AUTOMOTIVE

Echo Cancellation
ADPCM Transcoders
Digital PBXs

Line Repeaters
Channel Multiplexing

FAX

Cellular Telephones
Speaker Phones
Digital Speech
Interpolation (DSI)

Engine Control
Vibration Analysis
Antiskid Brakes
Adaptive Ride Control
Global Positioning

Power Tools
Digital Audio/TV
Music Synthesizer
Educational Toys

1200 to 19200-bps Modems X.25 Packet Switching Navigation

Adaptive Equalizers Video Conferencing Voice Commands

DTMF Encoding/Decoding Spread Spectrum Digital Radio

Data Encryption Communications Cellular Telephones
CONSUMER INDUSTRIAL MEDICAL

Radar Detectors Robotics Hearing Aids

Numeric Control
Security Access
Power Line Monitors

Patient Monitoring
Ultrasound Equipment
Diagnostic Tools
Prosthetics

Fetal Monitors

1-6
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1.4 How To Use This Manual

The purpose of this user’s guide is to serve as a reference book for the first-
generation TMS320 digital signal processors. Sections 2 through 6 provide
specific information about the architecture and operation of the device. Elec-
trical specifications and mechanical data can be found in the data sheet (Ap-

pendix A).

The following table lists each section and briefly describes the section con-

tents.

Section 2.

Section 3.

Section 4.

Section 5.

Section 6.

Pinouts and Signal Descriptions. Drawings of the DIP and
PLCC packages for TMS320C1x devices. Functional list-
ings of the signals, their pin locations, and descriptions.

Architecture. TMS320C1x design description, hardware
components, and device operation. Functional block dia-
grams and internal hardware summary table.

Assembly Language Instructions. Addressing modes and
format descriptions. Instruction set summary listed ac-
cording to function. Alphabetized individual instruction
descriptions with exampies.

Software Applications. Software application examples for

the use of various TMS320C1x instruction set features.

Hardware Applications. Hardware design techniques and
application examples for interfacing to codecs, external
memory, or common 4/8/16/32-bit microcomputers and
mMicroprocessors.

Seven appendices are included to provide additional information.

Appendix A.

Appendix B.

Appendix C.

Appendix D.

Appendix E.

Appendix F.

First-Generation TMS320 Data Sheet. Electrical specifi-

devices. .

SMJ32010/C10 Data Sheets. Electrical specifications,
timing, and mechanical data for these military devices.

ROM Codes. Discussion of ROM codes (mask options)
and the procedure for implementaticn.

Quality and Reliability. Discussion of Texas Instruments
quality and reliability criteria for evaluating performance.

Development Support/Part Order Information. Listings of
the hardware and software available to support the
TMS320C1x devices.

DSP Memories, Peripherals, and Sockets. Listings of the

memories, peripherals, and sockets available to support the
TMS320C1x devices in DSP applications.

1-7
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Appendix G. Programming the TMS320E15/E17 EPROM Cell. Proce-
dure for programming and verifying the EPROM cell using
the 28-pin TMS27C64.
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1.5 References

The following reference list contains useful information regarding functions,
operations, and applications of digital signal processing. These books also list
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into categories of general DSP, speech, image processing, and digital control
theory.
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Hamming, R.W., Digital Filters. Englewood Cliffs, NJ: Prentice-Hall,
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Kluwer Academic Publishers, 1986.

Jones, D.L. and Parks, T.W., A Digital Signal Processing Laboratory
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Morris, L. Robert, Digital Signal Processing Software. Ottawa, Canada:
Carleton University, 1983.

Oppenheim, Alan V. (Editor), Applications of Digital Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978.

Oppenheim, Alan V. and Schafer, R.W., Digital Signal Processing. En-
glewood Cliffs, NJ: Prentice-Hall, Inc., 1975.

Oppenheim, Alan V. and Wilisky, A.N. with Young, |.T., Signals and
Systems. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1983.

Parks, T.W. and Burrus, C.S., Digital Filter Design. New York, NY: John
Wiley and Sons, Inc., 1987.

Treichler, J.R., Johnson, Jr., C.R., and Larimore, M.G., A Practical Guide
to Adaptive Filter Design. New York, NY: John Wiley and Sons, Inc.,
1987.
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Speech:
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Dekker, Inc., 1981.
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Phillips, C. and Nagle, H., Digital Contro/ System Analysis and Design.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984.



2. Pinouts and Signal Descriptions

The TMS320C1x (first-generation TMS320) digital signal processors are all
available in a 40-pin dual-in-line (DIP) package. The TMS320C10 is also
packaged in a 44-pin plastic-leaded chip carrier (PLCC). The TMS320C15
and TMS320C17 will be available in a PLCC package in the future. Contact
the nearest Tl sales office for availability.

This section provides the pinouts and signal definitions in the following sub-
sections:

® TMS320C1x Pinouts (Section 2.1 on page 2-2)

[ ] TMS32010/C10/C15/E15 Signal Descriptions (Section 2.2 on page
2-3)

® TMS320C17/E17 Signal Descriptions (Section 2.3 on page 2-6)

Electrical specifications and mechanical data are given in Appendix A, the
First-Generation TMS320 Data Sheet. Refer to Appendix G for the pinout
used in programming the TMS320E15/E17 EPROM.
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Pinouts - TMS320C1x

2.1 TMS320C1x Pinouts

Figure 2-1 shows pinouts of the DIP packages for the TMS320C1x devices

and the PLCC package for the TMS320C10.

TMS32010, TMS320C10
TMS320C15, TMS32CE15
N/JD PACKAGE

(TOP VIEW)
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2.2 TMS32010/C10/C15/E15 Signal Descriptions
The signal descriptions for the TMS32010/C10 and TMS320C15/E15 devices

are provided in this section.

Table 2-1 lists each signal, its pin location

(DIP/PLCC), function, and operating mode(s), i.e., input, output, or high-
impedance state as indicated by |, O, or Z. The signals in Table 2-1 are
grouped according to function and alphabetized within that grouping.

Table 2-1. TMS32010/C10/C15/E15 Signal Descriptions

SIGNAL PIN 1/o/2t DESCRIPTION
(DIP/PLCC)
ADDRESS/DATA BUSES

A11 MSB 27/31 (0} Program memory address bus A11 (MSB) through AO (LSB)

A10 28/32 and port addresses PA2 (MSB) through PAO (LSB).

A9 29/33 Addresses A11 through AO are always active and never

A8 34/38 go to high impedance. During execution of the IN and

A7 35/39 OUT instructions, pins A2 through AO carry the port

A6 36/40 addresses PA2 through PAO.

A5 37/41

Ad 38/42

A3 39/43

A2/PA2 40/44

A1/PA1 1/2

AO/PAO 2/3

D15 MSB 18/21 1/0/2 Parallel data bus D15 (MSB) through DO (LSB). The data

D14 17/20 bus is always in the high-impedance state except when

D13 16/19 WE is active (low).

D12 15/17

D11 14/16

D10 13/15

D9 12/14

D8 11/13

D7 19/22

D6 20/23

D5 21/24

D4 22/25

D3 23/26

D2 24/27

D1 25/29

DO LSB 26/30

INTERRUPT AND MISCELLANEQUS SIGNALS

BIO 9/10 1 External polling input. Polled by BIOZ instruction. If low,
the device branches to the address specified by the instruc-
tion.

DEN 32/36 o} Data enable for device input data. When active low, DEN
indicates that the device will accept data from the data bus.
DEN is onl active during the first cycle of the IN instruc-
tion. MENV and WE will always be inactive (high) when
DEN is active.

t Input/Output/High-impedance state
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Table 2-1. TMS32010/C10/C15/E15 Signal Descriptions (Concluded)

SIGNAL

PIN
(DIP/PLCC)

i/0/zt

DESCRIPTION

3

5/6

External interrupt input. The interrupt signal is generated by
applying a negative-going edge to the INT pin. The edge is
used to latch the interrupt flag register (INTF) until an in-
terrupt is granted by the device. An active low level will also
be sensed.

MC/MP

3/4

Memory mode select pin. High selects the microcomputer
mode, in which 1.5K words (4K on the TMS320C15/E15)
of on-chip program memory are available. This mode also
allows an additional 2.5K words of program memory to re-
side off-chip on the TMS32010/C10. A low on the
MC/MP pin enables the microprocessor mode. In this
mode, the entire memory space is external, i.e., addresses O
through 4095.

MEN

33/37

Memory enable. MEN will be active low on every machine
cycle except when WE and DEN are active. MEN is a control
signal generated by the device to enable instruction fetches
from program memory. MEN will be active on instructions
fetched from both internal and external memory.

2

4/5

Reset input for initializing the device. When an active low
is placed on the RS pin for a minimum of five ciock cycles,
DEN, WE, and MEN are forced high, and the data bus (D15
through DO) is not driven. The program counter (PC) and
tne address bus (A11 through AQ) are then synchronously
cleared after the next complete clock cycle from the falling
edge of RS. Reset also disables the interrupt, clears the in-
terrupt flag register, and leaves the overflow mode register
unchanged. The device can be held in the reset state indef-
initely.

g

31/35

Write enable for device output data. When active low, WE
indicates that data will be output from the device on the
data bus. WE is oniy active during the first cycle of the OUT
instruction_and the second cycle of the TBLW instruction.
MEN and DEN will always be inactive (high) when WE is
active.

SUPPLY/OSCILLATOR SIGNALS

CLKOUT

6/7

System clock output (one-fourth crystal/CLKIN frequency).
Duty cycle is fifty percent.

Vee

30/34

5-V supply pin.

Vss

10/12

Ground pin.

X1

7/8

Crystal output pin for internal oscillator. If an internal oscil-
lator is not used, this pin should be left unconnected.

X2/CLKIN

8/9

Input pin to the internal oscillator (X2) from the crystal. Al-
ternatively, an input pin for the external oscillator (CLKIN).

t Input/Output/High-impedance state
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2.3 TMS320C17/E17 Signal Descriptions

Table 2-2 lists each signal provided on the TMS 320C17/E17, its pin
location, function, and operating mode(s), i.e., input, output, or high-impe-
dance state as indicated by |, O, or Z. The signals in Table 2-2 are grouped
according to function and alphabetized within that grouping.
The first signal and the signal following the slash are both used on the

TMS320C17/E17.

Table 2-2. TMS320C17/E17 Signal Descriptions

SIGNAL | PN (DiP) | 1/0/2t | DESCRIPTION
BIDIRECTIONAL DATA BUS
D15/LD15 18 1/0/2 16-bit parallel data bus D15 through DO. The data bus is
D14/LD14 17 always in the high-impedance state except when WE is
D13/LD13 16 active (low) or when executing an IN instruction from
D12/LD12 15 port 0 or port 1. On the TMS320C17/E17, the 16-bit data
D11/LD11 14 lines (LD15 through LDQ) are used for a coprocessor latch.
D10/LD10 13
D9/LD9 12
D8/LD8 11
D7/LD7 19
D6/LD6 20
D5/LD5 21
D4/LD4 22
D3/LD3 23
D2/LD2 24
D1/LD1 25
DO/LDO 26
) PORT ADDRESS BUS
PA2/TBLF 40 (o] 1/0 port address output/transmit buffer latch fuil flag.
PA1/RBLE 1 0 1/0 port address output/receive buffer latch empty flag.
PAO/HI/TO 2 1/0/2 1/0 port address output/latch byte select pin.
During IN and OUT instructions, PA2-PAO carry the port
address. These pins always output the three LSBs of the
program counter. On the TMS320C17/E17, these pins are
used by the coprocessor latch.
INTERRUPT AND MISCELLANEOUS SIGNALS
BIO 9 | External polling input. Polled by BIOZ instruction. If low,
the device branches to the address specified by the instruc-
tion. When in the TMS320C17/E17 coprocessor mode, the
BIO line is reserved for coprocessor interface and cannot
be driven externally.

t Input/Output/High-impedance state
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Table 2-2. TMS320C17/E17 Signal Descriptions (Concluded)

SIGNAL

PIN (DIP)

1/0/Zt

DESCRIPTION

DEN/RD

32

1/0/2

Data enable for device input data/external read for the out-
put latch. When active low, DEN indicates that the device
will accept data from the data bus. DEN is only active during
the first cycle of the IN instruction. WE will always be in-
active (high) when DEN is active. In the TMS320C17/E17
coprocessor mode, the external processor reads from the
coprocessor latch by driving the RD line active (low), thus
enabling the output latch to drive the latched data. When
the data has been read, the external device will bring the
RD line high.

External interrupt input. The interrupt signal is generated by
applying a logic low level to the EXINT (TMS320C17/E17) pin.
The edge is used to latch the system control register flag bit
(CRO) until an interrupt is granted by the device. When in the
TMS320C17/E17 coprocessor mode, the EXINT line is reserved
for coprocessor interface and cannot be driven externally.

MC

On the TMS320C17/E17, the MC pin must be connected
to the same state as the MC/PM pin. When these pins are
low, the coprocessor port is enabled. When these pins are
high, the microcomputer mode is enabled.

MC/PM

27

On the TMS320C17/E17, this pin must be connected to the same
state as the MC pin. When these pins are low, the coprocessor
port is enabled. When these pins are high, the microcomputer
mode is enabled.

Reset input for initializing the device. When an active low
ibs__Llaced on the RS pin for a minimum of five clock cycles,

EN and WE are forced high, and the data bus (D15
through DO) goes to a high-impedance state. The serial port
clock and transmit outputs also go to the high-impedance
state. The program counter (PC) and the port address bus
(PA2 through PAQ) are then synchronously cleared after the
next complete clock cycle from the falling edge of RS.

31

1/0

Write enable for device output data/external write enable for
the input latch. When active low, WE indicates that data
will be output from the device on the data bus. WE is only
active during the first cycle of the OUT instruction and the
second cycle of the TBLW instruction. DEN will always be
inactive (high) when WE is active. In the TMS320C17/E17
coprocessor mode, the external processor lowers the WR
line and places data on the bus. It next raises the WR line
to clock the data into the on-chip latch.

T Input/Output/High-impedance state
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Table 2-2. TMS320C17/E17 Signal Descriptions (Concluded)

SIGNAL

PIN (DIP)

1/0/zt

DESCRIPTION

XF

28

(]

External logic output flag. Programmable via system control
register bit 10 (CR10). This pin is the direct output of the
CR10 latch.

SUPPLY/OSCILLATOR SIGNALS

CLKOUT

[¢]

System clock output (one-fourth crystal/CLKIN frequency).

Vce

30

5-V supply pin.

Vss

Ground pin.

Xi

~

|
|
0

Crystal output pin for internal oscillator. If an internal oscil-
lator is not used, this pin should be left unconnected.

X2/CLKIN

Input pin to the internal oscillator (X2) from the crystal. Al-
ternatively, an input pin for the external oscillator (CLKIN).

(72}

ERIAL PORT SIGNALS

DR1
DRO

33
29

Serial-port receive-channel inputs. Serial data is received
in the receive registers via these pins.

DX1
DX0

36
35

0/Z

Serial-port transmit-channel outputs. Serial data is trans-
mitted from the transmit registers on these pins. These out-
puts are in the high-impedance state when not transmitting.

FR

37

Internal serial-port framing output. If internal framing is en-
abled, serial-port transmit and receive operations occur si-
multaneously on an active (high) FR framing pulse. Both
short and long FR pulses are selectable to provide fixed and
variable data-rate framing pulses for combo-codec interface.
The FR frequency is derived from the serial-port clock
(SCLK) and system control register bits CR23-CR186.

39

External serial-port receive-framing input. If external fram-
ing is enabled via the system control register, data is re-
ceived via the receive pins (DR1 and DRO) on the active
(low) FSR input. The falling edge of FSR initiates the re-
ceive process, and the rising edge sets the flag bit (CR1) in
the system control register, causing an interrupt to occur if
enabled.

3

38

External serial-port transmit-framing input. If external
framing is enabled, data is transmitted on the transmit pins
(DX1,DX0) on the active (low) FSX input. The falling edge
of FSX initiates the transmit process, and the rising edge
sets the flag bit (CR2) in the system control register, caus-
ing an interrupt to occur if enabled.

SCLK

34

1/0/Z

Serial-port clock. Master clock for transmitting and receiv-
ing serial-port data. Configurable as an input or output.
SCLK must always be present for serial-port operation. As
an input, SCLK is the external clock that controls data
transfers with the serial port. As an output, SCLK provides
the serial clock for data transfers and framing-pulse syn-
chronization. Its frequency is derived from the
TMS 320C17/E17 system clock, X2/CLKIN, and system
control register bits CR27-CR24. Reset (RS) forces SCLK

to the high-impedance state.

t Input/Output/High-impedance state
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3. Architecture

The modified Harvard architecture of the TMS320C1x (first-generation
TMS320) microprocessors increases throughput by aliowing program fetch
to overlap data operations. The hardware-intensive design of these devices
provides performance previously unavailable on a single chip. Hardware is
used to implement functions that other processors typically perform in soft-
ware. For example, the TMS320C1x devices contain a hardware muitiplier to
perform a multiplication in a single instruction cycle. Flexibility is further en-
hanced by a comprehensive instruction set that supports both general-
purpose and digital signal processing applications.

Major topics discussed in this section are listed below.

©  Architectural Overview (Section 3.1 on page 3-2)

° Functional Block Diagrams (Section 3.2 on page 3-4)
(] Internal Hardware Summary (Section 3.3 on page 3-7)
[

Memory Organization (Section 3.4 on page 3-10)
. Data and program memory
Data movement
Memory maps
Auxiliary registers
Microcomputer/microprocessor modes
Addressing modes

° Central Arithmetic Logic Unit (CALU) (Section 3.5 on page 3-17)
Shifters, ALU, and accumulator
Multiplier, T and P registers

{ System Control (Section 3.6 on page 3-22)
Program counter and stack
Reset
Status register

[ ] 1/0 Functions (Section 3.7 on page 3-27)
Input/output operation
Table read/table write operation
General-purpose 1/0 pins (BIO and XF)

[ ] Interrupts (Section 3.8 on page 3-32)

o Serial Port (Section 3.9 on page 3-36)
Receive and transmit registers
Timing and framing control

® Companding Hardware (Section 3.10 on page 3-42)
Encoder and decoder

[ ] Coprocessor Port (Section 3.11 on page 3-45)
[ ) System Control Register (Section 3.12 on page 3-47)
® Peripheral Mode (Section 3.13 on page 3-50)
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3.1 Architectural Overview

3-2

The TMS320 family utilizes a modified Harvard architecture speed and
flexibility. In a strict Harvard architecture, program and data memory lie in two
separate spaces, permitting a full overlap of instruction fetch and execution.
The TMS320 family’s modification of the Harvard architecture allows transfers
between program and data spaces, thereby increasing the flexibility of the
device. This modification permits coefficients stored in program memory to be
read into RAM, eliminating the need for a separate coefficient ROM. It also
makes available immediate instructions and subroutines based on computed
values.

The TMS320C1x devices contain a 32-bit ALU and accumulator for support
of double-precision, two’s-complement arithmetic. The ALU is a general-pur-
pose arithmetic unit that operates on 16-bit words taken from data RAM or
derived from immediate instructions. In addition to the usual arithmetic in-
structions, the ALU can perform Boolean operations, providing the bit ma-
nipulation ability required of a high-speed controller. The accumulator stores
the output from the ALU and is often an input to the ALU. It operates with a
32-bit wordlength. The accumulator is divided into a high-order word (bits
31 through 16) and a low-order word (bits 15 through 0). Instructions are
provided for storing the high- and low-order accumulator words in memory.

The multiplier performs a 16 x 16-bit two’s-complement multiplication with a
32-bit result in a single instruction cycle. The multiplier consists of three ele-
ments: the T Register, P Register, and multiplier array. The 16-bit T Register
temporarily stores the multiplicand; the P Register stores the 32-bit product.
Multiplier values either come from the data memory or are derived immediately
from the MPYK (multiply immediate) instruction word. The fast on-chip
multiplier allows the device to efficiently perform fundamental DSP operations
such as convolution, correlation, and filtering.

Two shifters are available for manipulating data. The ALU barrel shifter per-
forms a left-shift of 0 to 16 places on data memory words loaded into the
ALU. This shifter extends the high-order bit of the data word and zero-fills
the low-order bits for two's-complement arithmetic. The accumulator parallel
shifter performs a left-shift of 0, 1, or 4 places on the entire accumulator and
places the resulting high-order accumulator bits into data RAM. Both shifters
are useful for scaling and bit extraction.

The TMS320C1x devices have 144/256 words of on-chip data RAM and
1.5K/4K words of on-chip program ROM/EPROM to support program devel-
opment. The EPROM cell utilizes standard PROM programmers and programs
identically to a 64K CMOS EPROM (TMS27C64). The TMS320C1x devices
are capable of executing programs from up to 4K words of memory at full
speed for those applications requiring external program memory space. This
allows for external RAM-based systems to provide multiple functionality. The
TMS 320C17/E17 do not provide memory expansion capability.

The TMS32010/C10 and TMS320C15/E15 devices offer two modes of op-
eration defined by the state of the MC/MP pin: the microcomputer mode (high
level) or the microprocessor mode (low level). In the microcomputer mode,
on-chip ROM is mapped into the memory space with up to 4K words of
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memory available. In the microprocessor mode, all 4K words of memory are
external.

The TMS320C1x devices contain a four-level hardware stack for saving the
contents of the program counter during interrupts and subroutine calls. In-
structions are available for saving the device’s complete context. PUSH and
POP instructions permit a level of nesting restricted only by the amount of
available RAM. The interrupts used in these devices are maskable.

The 16-bit parallel data bus can be utilized to perform /0 functions in two
cycles. The 1/0 ports are addressed by the three LSBs on the address lines. In
addition, a polling input for bit test and branch operations (BIO) and an in-
terrupt pin (INT) have been incorporated for increased system flexibility. Two
of the 1/O ports on the TMS320C17/E17 are dedicated to the serial port and
companding hardware. 1/O port 0 is dedicated to control register 0, which
controls the serial port, interrupts, and companding hardware.

I/0 port 1 accesses control register 1, as well as both serial port channels, and
the companding hardware. The six remaining 1/0 ports are available for ex-
ternal parallel interfaces. On the TMS320C17/E17, port 5 may be used for
coprocessor interface.

The TMS 320C17/E17 offers a dual-channel serial port capable of full-
duplex serial communication and direct interface to combo-codecs. Receive
and transmit registers that operate with 8-bit data samples are 1/O-mapped.
Either internal or external framing signals for serial data transfers are selected
through the system control register. The serial port clock provides the bit
timing for transfers with the serial port, and may be either an input or output.
A framing pulse signal provides framing pulses for combo-codec circuits, an
8-kHz sample clock for voice-band systems, or a timer for control applications.

On-chip hardware enables the TMS320C17/E17 to compand (COMpress/-
exPAND) data in either y-law (U.S. and Japan) or A-law (European) format. The
companding logic operation is configured via the system control register. Data
may be companded in either a serial mode for operation on serial port data
(converting between linear and logarithmic PCM) or a parallel mode for com-
putation inside the device. The TMS320C17/E17 allows the hardware compan-
ding logic to operate with either sign-magnitude or two’s-complement numbers.

The coprocessui port on the TMS320C17/E17 provides a direct connection
to most 4/8-bit microcomputers and 16/32-bit microprocessors. In the co-
processor mode, the 16-bit parallel port is reconfigured to operate as a 16-bit
latched bus interface. Data widths of either 8 or 16 bits may be selected for
the coprocessor port, accessed through 1/0 port 5 using IN and OUT in-
structions. The coprocessor interface allows the device to act as a peripheral
(slave) microcomputer to a microprocessor, or as a master to a peripheral mi-
crocomputer. In that mode, the 16 data lines are used for the 6 parallel 16-bit
1/0 ports.
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3.2 Functional Block Diagrams

The functional block diagrams shown in this section outline the principal
blocks and data paths within the TMS320C1x processors. Further details of
functional biocks are given in the succeeding sections. The two block dia-
grams also show all the device interface pins for the respective processors.

3-4
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Figure 3-1. TMS32010/C10/C15/E15 Block Diagram
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3.3 Internal Hardware Summary

The TMS320C1x internal hardware implements functions that other process-
ors typically perform in software or microcode. For example, the device con-
tains hardware for single-cycle 16 x 16-bit multiplication, data shifting, and
address manipulation. This hardware-intensive approach provides computing
power previously unavailable on a single chip.

Table 3-1 presents a summary of the TMS320C1x internal hardware. This
summary table, which includes the internal processing elements, registers, and
buses, is alphabetized within each functional grouping. All of the symbols
used in this table correspond to the symbols used in the block diagrams of
Section 3.2, the succeeding block diagrams in this section, and the text
throughout this document.
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Table 3-1. TMS320C1x Internal Hardware

UNIT SYMBOL FUNCTION

Accumulator ACC A 32-bit accumulator divided into a high-order word (bits
31 through 16) and a low-order word (bits 15 through 0).
Used for storage of ALU output.

Arithmetic Logic Unit ALU A 32-bit two’s-complement arithmetic logic unit having
two 32-bit input ports and one 32-bit output port feeding
the accumulator.

Auxiliary Registers ARO,AR1 Two 16-bit registers used for data memory addressing and
loop count control. Nine LSBs of each register are con-
figured as up/down counters.

Auxiliary Register Pointer ARP A status bit that indicates the currently active auxiliary
register.

Central Arithmetic Logic CALU The grouping of the ALU, multiplier, accumulator, and

Unit shifters.

Data Bus D(15-0) A 16-bit bus used to route data from RAM.

Data Memory Page DP A status bit that points to the data RAM address of the

Pointer current page. A data page contains 128 words.

Data RAM - 144 or 256 words of on-chip random access memory
containing data.

External Address Bus A(11-0)/ A 12-bit bus used to address external program memory.

PA(2-0) The three LSBs are port addresses in the 1/0 mode.

Interrupt Flag INTF A single-bit flag that indicates an interrupt request has
occurred (is pending).

Interrupt Mode INTM A status bit that masks the interrupt flag.

Multiplier MULT A 16 x 16-bit parallel hardware multiplier.

Overflow Flag ov A status bit flag that indicates an overflow in arithmetic
operations.

Overflow Mode VM A status bit that defines a saturated or unsaturated mode
in arithmetic operations.

P Register P A 32-bit register containing the product of multiply oper-
ations.

Program Bus P(15-0) A 16-bit bus used to route instructions from program

: memory.
Program Counter PC (11-0) A 12-bit register used to address program memory. The

PC always contains the address of the next instruction to
be executed. The PC contents are updated following each
instruction decode operation.

Program ROM/EPROM - 1.5K or 4K words of on-chip read only memory (ROM or
EPROM) containing the program code.
Shifters - Two shifters: the ALU barrel shifter that performs a left-

shift of 0 to 16 bits on data memory words loaded into the
ALU, and the accumulator paralle! shifter that performs a
left-shift of 0, 1, or 4 places on the entire accumulator and
places the resulting high-order bits into data RAM.

Stack - A 4 x 12 hardware stack used to store the PC during in-
terrupts or calls.
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Table 3-1. TMS320C1x Internal Hardware (Concluded)

UNIT SYMBOL FUNCTION
Status Register ST A 16-bit status register that contains status and control
bits.
T Register T A 16-bit register containing the multiplicand during mui-

tiply operations.

Additional Hardware on the TMS320C17/E17

Companding Hardware

Data companding encoder/decoder in either u-law or A-
law PCM conversion format. Two modes of operation:
serial mode for operating on serial port data (linear/log-
arithmic PCM conversions), or parallel mode for compu-
tation inside the device. Companding is selected through
the control register.

Latched Data Bus LD(15-0) A 16-bit bidirectional latched data bus used in coproces-
sor mode. This bus is connected internally to two latches,
one for input and one for output.

Serial Port Clock SCLK The clock that provides the timing control for data trans-
fers with the seriai port. SCLK is configured through the
control register.

Serial Port Framing FR The FR signal provides serial port framing compatible with

Control combo-codec devices. The FR pulse signifies a
transmit/receive of new data on the serial port.

Serial Port Receive RRO,RR1 8-bit seriai port registers that receive 8-bit data samples.

Registers )

Serial Port Receive RSO,RS1 8-bit registers used to shift in serial port data from pin

Shift Registers DRO or DR1.

Serial Port Transmit TRO,TR1 8-bit serial port transmit registers in a FIFO (first in, first

Registers out) configuration.

Serial Port Transmit TSO,TS1 8-bit registers used to shift out serial port data onto pin

Shift Registers DXO0 or DX1.

System Control Register CR(31-0) A 32-bit register that controls interrupts, serial port chan-

nels, companding hardware, and coprocessor port chan-
nels. Control register 1, accessed through port 1, consists
of the upper 16 bits (CR31-CR16). Control register 0, ac-
cessed through port 0, consists of the lower 16 bits
(CR15-CRO0).
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3.4.1 Data

The TMS320C1x devices utilize a Harvard architecture, in which data and
program memory reside in two separate spaces. The TMS320C1x provides
144/256 16-bit words of on-chip data RAM and 1.5K/4K words of program
ROM. On-chip program EPROM versions are available. This section describes
the TMS320C1x data and program memory, data movement, memory maps,
auxiliary registers, microcomputer/microprocessor modes, and memory ad-
dressing modes.

Memory

Data memory consists of 144/256 words of 16-bit on-chip RAM (see Figure
3-3). The TMS32010/C10 provides 144 words. The TMS320C15/C17 offers expan-
ded on-chip RAM of 256 words. See Section 3.4.4 for memory map configu-
rations.

To expand data memory, the data operands may be stored off-chip, and then
read into the on-chip RAM as they are needed. Two instruction pairs,
TBLR/TBLW and IN/OUT, are available for accomplishing this. The table read
(TBLR) instruction can transfer values from program memory, either on-chip
ROM or off-chip ROM/RAM, to the on-chip data RAM. The table write
(TBLW) instruction transfers values from the data RAM to off-chip program
RAM. These instructions take three cycles to execute. When using the
IN/OUT instruction pair, the IN instruction reads data from a peripheral and
transfers it to the data RAM. With some extra hardware, the IN instruction,
together with the OUT instruction, can be used to read and write from the data
RAM to large amounts of external storage addressed as a peripheral. This
method is faster since IN and OUT instructions take only two cycles to exe-
cute. See Section 6.1 for hardware applications using RAM/ROM expansion.
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AUXILIARY FROM DATA
REGISTERS PROGRAM PAGE
S POINTER

ADDRESS

DATA RAM
(144/256
WORDS)

DATA

Figure 3-3. On-Chip Data Memory

3.4.2 Program Memory

Program memory consists of 1.5K/4K words on the TMS320C1x devices. The
TMS32010/C10 provides 1.5K words, and the TMS320C15/C17 provides 4K
words. The on-chip program ROM of up to 4K words allows program execu-
tion at full speed without the need for high-speed external program memory.
On-chip program EPROM of 4K words, provided on the TMS320E15/E17, pre-
sents two additional benefits. First, application development is greatly facili-
tated since the EPROM can be directly programmed by the user. Second, these
devices implement a security feature that can be used to protect proprietary
algorithms by preventing the EPROM contents from being read.

Program memory operation is user-selectable by means of the MC/MP
(microcomputer/microprocessor) pin. Setting MC/MP high places the device
in the microcomputer mode. Holding the pin low places the device in the
microprocessor mode.

In the microcomputer mode, only locations O through 1523 of the ROM on
the TMS32010/C10 are available for the user's program.

Locations 1524-1535 are reserved by Texas Instruments for testing purposes.
The device architecture allows for an additional 2.5K words of program mem-
ory to reside off-chip on the TMS32010/C10. ROM locations O through 3999
on the TMS320C15/C17 are available for the user's program; locations 4000
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through 4095 are reserved for testing purposes. Reserved locations may not
be utiiized by the user. In the microprocessor mode, all 4K words of memory
are.external. Note that the microprocessor mode is not available for the

TMS320C17/E17. See section 3.4.4 for memory map configurations.

External RAM or ROM can be interfaced to the TMS320C1x (see Section 6.1)
for those applications requiring external program memory space. This provides
multiple functionality for external RAM-based systems. The TMS320C17/E17
provides no direct program memory expansion capability.

Twelve output pins are available for addressing external memory. These pins,
A11 (MSB) through AO (LSB), contain the buffered outputs of the program
counter or the I/0 port address. When an instruction is fetched from off-chip
memory, the MEN (memory enable) strobe will be generated to enable the ex-
ternal memory. The instruction word is then transferred to the processor via
the data bus (see Section 3.7).

When in the microcomputer mode, the processor selects internal program
memory. The MEN strobe wil! still become active in this mode, and the address
lines A11 through AO will still output the current value of the program counter
although the instruction word will be read from internal program memory.
Note that MEN is never active at the same time as the WE or DEN signals. In
effect, MEN will go low every clock cycle except when an 1/0 function is being
performed by the IN, OUT, or TBLW instructions. In these muiticycle in-
structions, MEN goes low during the clock cycles in which WE or DEN do not
go low.

Figure 3-4 gives an example of external program memory expansion. Even
when executing from external memory, the TMS320C1x performs at full
speed. Note that some ports are reserved for on-chip peripheral logic.

TME320C1x DATA LINES

16
ADDRESS LINES 4K X 16

——={MC/MP 12 STATIC RAM
| aND/OR PROM

MEN [ —5UTPuT
ENABLE

CHIP i WRITE
SELECT ENABLE

(ONLY FOR
RAM)

Figure 3-4. External Program Memory Expansion Example
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3.4.3 Data Movement

The TMS320C1x provides instructions for data movement functions that effi-
ciently utilize the on-chip RAM. The DMQV (data move) function is useful
for implementing algorithms that use the z-' delay operation, such as convo-
lutions and digital filtering where data is being passed through a time window.

Implemented in on-chip RAM, the DMOV function allows a word to be copied
from the currently addressed data memory location in on-chip RAM to the
next higher location while the data from the addressed location is being op-
erated upon in the same cycle (e.g., by the CALU). The LTD (load T register,
accumulate previous product, and move data) instruction uses the data move
function.

3.4.4 Memory Maps

The TMS320C1x devices provide three separate address spaces for program
memory, data memory, and 1/0O, as shown in Figure 3-5 and Figure 3-6.
Program memory is configured according to the state of the MC/MP pin. For
further information about data and program memory, see Sections 3.4.1, 3.4.2,
and 3.4.3. 1/0 functions are discussed in Section 3.7.

PROGRAM : PROGRAM
0(>0000) 0(>0000)
INTERNAL
MEMORY
SPACE
EXTERNAL
1523 (>05F3) MEMORY
1524 (>05F4) SPACE
RESERVED
FOR
1535 (>05FF) TESTING
1536(>06800) EXTERNAL
MEMORY
4095 (>OFFF) SPACE 4085 (>0FFF) _
MC/MP = 1 MC/MP = 0
MICROCOMPUTER MODE MICROPROCESSOR MODE
DATA /0
0(>0000) 0(>0000)
EXTERNAL
PAGE 0 7(>0007)
127é>007F;
128(>0080
143 (>008F) PAGE 1

Figure 3-56. Memory Maps for the TMS32010/C10
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PROGRAM PROGRAM
0(>0000) 0(>0000)
INTERNAL
MEMORY
SPACE EXTERNAL
MEMORY
SPACE
3999 (>0F9F)
4000(>0FA0) [ premros
FOR
4095 (>0FFF)|____TESTING 4095 (>OFFF) _
MC/MP = 1 MC/MP = 0
MICROCOMPUTER MODE MICROPROCESSOR MODE
(NOT ON TMS320C17/E17)
DATA i)
0(>0000) 0(>0000)
EXTERNAL'
7(>0007)
PAGE 0
127(>007F)
128(>0080)
PAGE 1
255(>00FF)

tOn the TMS320C17/E17, ports O and 1 are dedicated to the internal
control register; no external I/O is available in the coprocessor mode.

Figure 3-6. Memory Maps for the TMS320C15/E15 and
TMS320C17/E17

3.4.5 Auxiliary Registers

The TMS320C1x devices provide two 16-bit auxiliary registers (ARO and
AR1). This section discusses each register's function and how an auxiliary
register is selected, loaded, and stored.

The auxiliary registers may be used for indirect addressing of data memory,
temporary data storage, and loop control. Indirect addressing allows place-
ment of the data memory address of an instruction operand into the least-
significant eight bits of an auxiliary register. The registers are selected by a
single-bit Auxiliary Register Pointer (ARP) that is loaded with a value of O or
1, designating ARO or AR1, respectively. The ARP is part of the status register,
and can be stored in memory.
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When the auxiliary registers are autoincremented/decremented by an indirect
addressing instruction or by the BANZ (branch on auxiliary register not zero)
instruction, the lowest nine bits are affected (see Figure 3-7). This counter
portion of an auxiliary register is a 9-bit counter, as shown in Figure 3-8 and
Figure 3-9.

COUNTER

]
[}
re >

1
1
15 958 1
)
1

INDIRECT ADDRESS

Figure 3-7. Auxiliary Register Counter

15 8 0
AR | UNAFFECTED T1 11111111

INCREMENT

5 8 0

AR | UNAFFECTED [000000000

Figure 3-8. Indirect Addressing Autoincrement

15 8 0
AR UNAFFECTEDI111111111

DECREMENT
15 8 0

AR IUNAFFECTED |000000000

Figure 3-9. Indirect Addressing Autodecrement

The upper seven bits of an auxiliary register (i.e., bits 9 through 15) are unaf-
fected by any autoincrement/decrement operation. This includes autoincre-
ment of 111111111 (the lowest nine bits go to 0) and autodecrement of
000000000 (the lowest nine bits go to 111111111); in each case, bits 9
through 15 are unaffected.

The auxiliary registers can be saved in and loaded from data memory with the
SAR (store auxiliary register) and LAR (load auxiliary register) instructions.
This is useful for performing context saves. SAR and LAR transfer entire 16-bit
values to and from the auxiliary registers even though indirect addressing and
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loop counting utilize only a portion of the auxiliary register. See Section 4 for
programming of the indirect addressing mode.

The BANZ instruction permité the auxiliary registers to also be used as loop
counters. BANZ checks if an auxiliary register is zero. If not, it decrements and
branches. See Section 5.3.3 for loop code using the auxiliary registers.

3.4.6 Memory Addressing Modes

The TMS320C1x can address up to 4K words of program memory and up to
144/256 words of data memory. Three forms of instruction operand ad-
dressing can be used: dirzct, indirect, and immediate addressing. Figure 3-10
illustrates operand addressing in the three modes. The addressing modes are
described in detail in Section 4.1.

INSTRUCTION

DIRECT ADDRESSING OPCODE dma DP

7 : OPERAND

INSTRUCTION

INDIRECT ADDRESSING | OPCODE| ARP

L= Arw@arP |2+ oPERAND ]

INSTRUCTION

IMMEDIATE OPERAND OPCODE |OPERAND

Figure 3-10. Methods of Instruction Operand Addressing

In the direct addressing mode, the 1-bit data memory page pcinter (DP) se-
lects either page O consisting of memory locations 0-127 or page 1 consisting
of locations 128-143/255. The data memory address (dma), specified by the
seven LSBs of the instruction concatenated with the DP, addresses the desired
word within the page. Note that DP is part of the status register and thus can
be stored in data memory.

Indirect addressing uses the lower eight bits of the auxiliary registers as the
data memory address. This is sufficient to address all 266 data words; no
paging is necessary with indirect addressing. The current auxiliary register is
selected by the auxiliary register pointer (ARP). In addition, the auxiliary
registers can be made to autoincrement/decrement during any given indirect
instruction. Note that the increment/decrement occurs after the current in-
struction is finished executing.

When an immediate operand is used, it is contained within the instruction
word itself. '
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3.5 Central Arithmetic Logic Unit (CALU)

The Central Arithmetic Logic Unit (CALU) contains a 16 x 16-bit parallel
multiplier, a 32-bit Arithmetic Logic Unit (ALU), a 32-bit accumulator (ACC),
and two shifters. This section describes the CALU components and their
functions. Figure 3-11 is a block diagram showing the components of the
CALU.

T(16)
SHIFTER
(0-16) MULTIPLIER
P(32)
32 132
!
MUX 7
732
1
bao ALU(32) ;
32
l ACC(32)
32 32

Figure 3-11. Central Arithmetic Logic Unit (CALU)

The following steps occur in the implementation of a typical ALU operation:
1) Data is fetched from the RAM on the data bus,

2) Data is passed through the barrel shifter where it can be left-shifted 0
to 16 bits, depending on the value specified by the instruction,

3) Data enters the ALU where it is operated upon and loaded into the ac-
cumulator,

4)  The result obtained in the accumulator is passed through a parallel left-
shifter present at the accumulator output to aid in scaling results, and
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5) The result is stored in the data RAM. Since the accumulator is 32 bits
wide, both halves must be stored separately.

One input to the ALU is always provided from the accumulator, and the other
input may be provided from the P Register of the multiplier or the barrel shifter
that is loaded from data memory.

3.56.1 Shifters

Two shifters are available for manipulating data: a barrel shifter for shifting
data from the data RAM into the ALU and a parallel shifter for shifting the
accumulator into the data RAM (see Figure 3-11).

The barrel shifter has a 16-bit input connected to the data bus and a 32-bit
output connected to the ALU The barrel shifter produces a left shift of 0 to
16 bits on all data memory words that are loaded into, subtracted from, or
added to the accumulator by the LAC, SUB, and ADD instructions. The shifter
zero-fills the LSBs and sign-extends the 16-bit data memory word to 32 bits
by an arithmetic left-shift (i.e., the bits to the left of the MSB of the data word
are filled with ones if the MSB is a one or with zeros if the MSB is a zero).
This differs from a logical left-shift where the bits to the left of the MSB are
always filled with zeros. A small amount of code is required to perform an
arithmetic right-shift or a logical right-shift.

The following exampies illustrate the barrel shifter’s function:

® Data memory location 20 holds the two’s-complement number: >7EBC.

The LAC (load accumulator) instruction is executed, specifying a left-
shift of 4:

LAC 20,4

The accumulator then holds the following 32-bit signed two’s-
complement number:

31 16 15 0
[0 00 7/]E B CoO

Since the MSB of >7EBC is a zero, the upper accumulator was zero-
filled. ’

® Data memory location 30 holds the two’s-complement number: >8EBC.

The LAC (load accumulator) instruction is executed, specifying a left-
shift of 8:

Lac 30,8

The accumulator then holds the following 32-bit signed two's-
complement number:

31 16 15 0
[F Fe8 E[BCoO 0
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Since the MSB of >8EBC is a one, the upper accumulator was filled with
ones.

Instructions are provided that perform operations with the lower half of the
accumulator and a data word without first sign-extending the data word™(i.e.,
treating it as a 16-bit rather than a 32-bit word). The mnemonics of these in-
structions typically end with an ‘S,’ indicating that sign-extension is sup-
pressed (e.g., ADDS, SUBS). Along with the instructions that operate on the
upper half of the accumulator, these instructions aliow the manipuiation of
32-bit precision numbers.

The parailei shifter is activated oniy by the SACH (store high-order accu-
mulator word) instruction. This instruction causes the shifter to be loaded with
the 32-bit contents of the accumulator. The data is then left-shifted. The
most-significant 16 bits from the shifter are stored in RAM, resulting in a loss
of the high-order bits of data. The contents of the accumulator remain un-
changed. The parallel shifter can execute a shift of only 0, 1, or 4. Shifts of 1
and 4 are used with multiplication operations. No right-shift is directly imple-
mented. The following example illustrates the accumulator shifter’s function:

[ ] The accumulator holds the following 32-bit signed two’s-complement
number:

31 16 15 0
A3 4 8B[78¢cCD

The SACH instruction is executed, specifying that a left-shift of four be
performed on the high-order accumulator word before it is stored in data
memory location 40:

SACH 40,4

Data memory location 40 then contains the two’s-complement number:
>34B7. The accumulator still retains >A34B78CD.

3.5.2 ALU and Accumulator

The 32-bit ALU and accumulator (see Figure 3-11) implement a wide range
of arithmetic and logical functions, the majority of which execute in a single
clock cycle. Once an operation is performed in the ALU, the result is trans-
ferred to the accumulator where additional operations such as shifting may
occur. Data that is input to the ALU may be scaled by the barrel shifter.

The ALU is a general-purpose arithmetic logic unit that operates on 16-bit
data words, producing a 32-bit result. The ALU can add, subtract, and perform
logical operations. The accumulator is always the destination and the primary
operand. The result of logical operations is shown in Table 3-2. A data mem-
ory value (dma) is the operand for the lower half of the accumulator (bits 15
through 0). Zero is the operand for the upper half of the accumulator.
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Table 3-2. Accumulator Results of a Logical Operation

FUNCTION ACC BITS 31-16 ACC BITS 15-0
XOR (0).XOR.(ACC (31-16)) (dma).XOR.(ACC (15-0))
AND (0).AND.(ACC (31-16)) (dma).AND.(ACC (15-0))

OR (0).0R.(ACC (31-16)) (dma).OR.(ACC (15-0))

The 32-bit accumulator stores the output from the ALU and is also often an
input to the ALU. The accumulator is divided into two 16-bit words for stor-
age in data memory: a high-order word (bits 31 through 16) and a low-order
word (bits 15 through 0). The SACH and SACL instructions are used to store
the high- and low-order accumulator words in data memory. These in-
structions can be used in the implementation of double-precision arithmetic.

A shifter at the output of the accumulator provides a left-shift of 0, 1, or 4
places. This shift is performed while the data is being transferred to the data
bus for storage. The contents of the accumulator remain unchanged. When
the high-order word is shifted left, the LSBs are transferred from the low-order
word, and the MSBs are lost. When the low-order word is shifted left, the
LSBs are zero-filled, and the MSBs are lost.

The accumulator also has the ability to simulate the effect of saturation in an-
alog systems. This capability is implemented using the accumulator overflow
saturation mode, which is controlled by the OVM (overflow mode) status
register bit. The accumulator saturation mode is enabled or disabled by setting
or resetting the OVM bit, respectively, through the use of the SOVM and
ROVM (set and reset OVM bit) instructions. If OVM is set and accumulator
operation results in an overflow, the accumulator is loaded with either the
largest positive or negative number, depending on the sign of the operands
and the actual result. The value of the accumulator upon saturation is
>7FFFFFFF (positive) or >80000000 (negative). If OVM is reset and an ov-
erflow occurs, the overflowed results are loaded into the accumulator without
modification. (Note that logical operations cannot result in overflow.)

It is particularly desirable to enable the saturation mode when the accumulator
contents represent a signal value, since without saturation mode enabled, ov-
erflows cause undesirable discontinuities in the represented waveform. When
saturation mode is enabled, behavior of the accumulator more closely resem-
bles the tendency of an analog system to limit or saturate at a maximum level
when subjected to excessively large size signals.

When an overflow occurs, the OV (overflow) bit in the status register is set,
regardless of whether or not the OVM bit is set. The BV (branch on overflow)
instruction, which branches only if OV is set, can be used to allow programs
to make decisions based on whether or not an overflow has occurred and act
accordingly. Once set, OV is reset only by the BV instruction, or by directly
loading the status register. Since OV is part of the status register, its state can
be stored in data memory using the SST (store status register) instruction or
loaded using the LST (load status register) instruction. This allows the state
of OV from different program contexts to be saved independently, if desired,
and examined outside of time-critical code segments.
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The TMS320C1x also has the capability of executing branch instructions that
depend on the status of the ALU and accumulator. These instructions (BLZ,
BLEZ, BGEZ, BGZ, BNZ, and BZ) cause a branch to be executed if a specific
condition is met (see Section 4 for a complete list of TMS320C1x in-
structions).

3.5.3 Multiplier, T and P Registers

The TMS320C1x utilizes a 16 x 16-bit hardware multiplier (see Figure 3-11),
which is capable of computing a 32-bit product in a single machine cycle. The
following two registers are associated with the muitiplier:

® A 16-bit Temporary Register (T) that holds one of the operands for the
multiplier, and

° A 32-bit Product Register (P) that holds the product.

In order to use the multiplier, an operand must first be loaded into the T reg-
ister from the data bus using an LT, LTA, or LTD instruction. Then, the MPY
(multiply) or MPYK (multiply immediate) instruction provides the second
operand (also from the data bus). |f the MPY instruction is used, the multi-
plier value is a 16-bit number. If the MPYK instruction is used, the value is a
13-bit immediate constant contained in the MPYK instruction word. This
13-bit constant is right-justified and sign-extended. After execution of the
multiply instruction, the product will be placed in the P register. The product
can then be added to, subtracted from, or loaded into the accumulator by ex-
ecuting a PAC, APAC, SPAC, LTA, or LTD instruction. Pipelined multiply and
accumulate operations can be accomplished with the LTA/LTD and
MPY/MPYK instructions.

Note that the contents of the P register cannot be restored without altering
other registers. Interrupts are prevented from occurring until the instruction
following the MPY/MPYK instruction has been executed. Therefore, the mul-
tiply instruction should always be followed by an instruction that combines
the P register with the accumulator.
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3.6 System Control

System control on the TMS320C1x processors is provided by the program
counter and stack, the external reset signal, interrupts (see Section 3.8), and
the status register. This section explains the function of these components in
system control. In addition to these functions, the TMS320C17/E17 system
control register controls the operation of the coprocessor port. The system
control register for the TMS320C17/E17 is discussed in Section 3.12.

3.6.1 Program Counter and Stack
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The program counter and stack enable the execution of branches, subroutine
calls, interrupts, and table read/table write instructions. The program counter
(PC) is a 12-bit register that contains the program memory address of the next
instruction to be executed. The TMS320C1x reads the instruction from the
program memory location addressed by the PC and increments the PC in
preparation for the next instruction prefetch. The PC is initialized to zero by
activating the reset (RS) line.

The TMS320C1x devices utilize a modified Harvard architecture in which data
memory and program memory lie in two separate spaces, thus permitting a full
overlap of instruction fetch and execution. Figure 3-12 outlines the overlap
of the instruction prefetch and execution. On the falling edge of CLKOUT, the
program counter (PC) is loaded with the address of the instruction (load PC
2) to be prefetched while the current instruction (execute 1) is decoded and
begins execution. The next instruction is then fetched (fetch 2) while the
current instruction continues to execute (execute 1). Even as another prefetch
occurs (fetch 3), both the current instruction (execute 2) and the previous
instruction are still executing. This is possible because of a highly pipelined
internal structure.
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Figure 3-12. Harvard Architecture

To permit the use of external program memory, the PC outputs are buffered
and sent to the external address bus pins, A11 through AO. The PC outputs
appear on the address bus during all modes of operation. The nine MSBs of
the PC (A11 through A3) have unique outputs assigned to them, while the
three LSBs are multiplexed with the port address lines, PA2 through PAO. The
port address field is used by the 1/0 instructions, IN and OUT.

Program memory is always addressed by the contents of the PC. The contents
of the PC can be changed by a branch instruction if the particular branch
condition being tested is true. Otherwise, the branch instruction simply incre-
ments the PC. All branches are absolute, rather than relative, i.e., a 12-bit
value derived from the branch instruction word is loaded directly into the PC
in order to accomplish the branch. When interrupts or subroutine call in-
structions occur, the contents of the PC are pushed onto the stack to preserve
return linkage to the previous program context.

The stack is 12 bits wide and four levels deep. The PC stack is accessible
through the use of the PUSH and POP instructions. The PUSH instruction
pushes the twelve LSBs of the accumulator onto the top of the stack (TOS).
Whenever the contents of the PC are pushed onto the TOS, the previous
contents of each level are pushed down, and the fourth location of the stack
is lost. Therefore, data will be lost if more than four successive pushes (stack
overflow) occur before a pop. The reverse happens on pop operations. The
POP instruction pops the TOS into the twelve LSBs of the accumulator. Any
pop after three sequential pops yields the value at the fourth stack level. All
four stack levels then contain the same value. Following the POP instruction,
the TOS can be moved into data memory by storing the low-order accumula-
tor word (SACL instruction). This allows expansion of the stack into data
RAM. From data RAM, it can easily be copied into program RAM off-chip by
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using the TBLW (table write) instruction. In this way, the stack can be ex-
panded to very large levels.

Note that the TBLR and TBLW instructions utilize one level of the stack;
therefore, only three nested subroutines or interrupts can be accommodated
without stack overflow occurring.

To handle subroutines and interrupts of much higher nesting levels, part of the
data RAM or external RAM can be allocated to stack management. In this
case, the TOS is popped immediately at the start of a subroutine or interrupt
routine and stored in RAM. At the end of the subroutine or interrupt routine,
the stack value stored in RAM is pushed back onto the TOS before returning
to the main routine.

3.6.2 Reset
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Reset (RS) is a non-maskable external interrupt that can be used at any time
to put the TMS320C1x into a known state. Reset is typically applied after
powerup when the machine is in a random state. The reset input must be held
low for a minimum of five clock cycles.

Driving the RS signal low causes the TMS320C1x to terminate execution and
forces the program counter to zero. RS affects various registers and status bits.
At powerup, the state of the processor is undefined. For correct system op-
eration after powerup, a reset signal must be asserted low to guarantee a reset
of the device (see Section 5.1 for other important reset considerations). Pro-
cessor execution begins at location 0, which normally contains a B (branch)
statement to also direct program execution to the system initialization routine
(see Section 5.1 for an initialization routine example).

Upon receiving an RS signal, the following actions take place:
1)  The control lines for DEN, WE, and MEN are forced high.
2) The data bus D15-DO is placed in the high-impedance state.

3) The Program Counter (PC) is set to 0, and the address bus A11-AQ is
driven with all zeroes after the next clock cycle from RS going low.

4) The interrupt is disabled, and the mterrupt flag register is reset to all
zeroes.

5)  Control register bits on the TMS320C17/E17 are set as follows: CR11 is
set to 0; CR15 is set to 1; CR29 is set to 0.

The TMS320C1x can be held in the reset state indefinitely. Note that the ARP,
DP, and OVM status bits are not initialized by reset. Accordingly, it is critical
that these bits be initialized in software by the user following reset.
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3.6.3 Status Register

The status register consists of five status bits. These status bits can be indi-
vidually altered through dedicated instructions. In addition, the SST instruc-
tion provides for storing the status register in data memory. The LST
instruction loads the status register from data memory, with the exception of
the INTM bit. This bit can be changed only by the EINT/DINT (enable/disable
interrupt) instructions. In this manner, the current status of the device may
be saved on interrupts and subroutine calls.

Table 3-3 shows instructions that affect the status register contents. Note that

several bits in the status registers are reserved and read from the status register
as logic ones by the SST instruction.

Table 3-3. Status Register Field Definitions

FIELD FUNCTION

ARP Auxiliary Register Pointer. This single-bit field selects the AR to be used
in indirect addressing. ARP = 0 selects ARO; ARP = 1 selects AR1. ARP
may be modified by executing instructions that permit the indirect ad-
dressing option, and by the LARP, MAR, and LST instructions.

DP Data Memory Page Pointer. The single-bit DP register is concatenated
with the 7 LSBs of an instruction word to form a direct memory address
of 16 bits. DP = 0 selects the first 128 words of data memory, i.e., page
0. DP = 1 selects page 1, the remaining words in data memory. DP may
be modified by the LST, LDP, and LDPK instructions.

INTM Interrupt Mode Bit. When an interrupt is serviced, the INTM bit is auto-
matically set to one before the interrupt service routine begins. INTM =
0 enables all maskable interrupts; INTM = 1 disables all maskable inter-
rupts. INTM is set and reset by the DINT and EINT instructions, respec-
tively. RS also sets INTM. INTM has no effect on the unmaskable RS
interrupt. Note that INTM is unaffected by the LST instruction.

ov Overflow Flag. OV = 0 indicates that the accumulator has not overflowed.
OV = 1 indicates that an overflow has occurred. Once an overflow occurs,
the OV remains set until a reset, BV, or LST instruction clears the OV.

OovM Overflow Mode Bit. OVM = 0 disables the overflow mode, causing ov-
erflowed results to remain in the accumulator. OVM = 1 enables the ov-
erflow mode, causing the accumulator to be set to either its most positive
or negative value upon encountering an overflow. The SOVM and ROVM
instructions set and reset this bit. LST may also be used to modify the
OVM.

The contents of the status register can be stored in data memory by executing
the SST instruction. |f the SST instruction is executed using the direct ad-
dressing mode, the device automatically stores this information on page 1 of
data memory at the location specified by the instruction. Thus, an SST in-
struction using the direct addressing mode can only specify an address less
than 16 on the TMS32010/C10 since the second page of memory contains only
16 words. The second page of memory on the TMS320C15/E15 and
TMS320C17/E17 contains 128 words. If the indirect addressing mode is selec-
ted, the contents of the status register may be stored in any RAM location
selected by the auxiliary register.
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The SST instruction does not modify the contents of the status register. Figure
3-13 shows the position of the status bits as they appear in the appropriate
data RAM location after execution of the SST instruction.

15 14 13 121110 9 8 7 6 5 4 3 2 1 0
[ov]ovm] intTM [ 1 1 1 1Jarr[ 1 1 1 1 1 1 o]DP|

Figuré 3-13. Status Register Organization

The LST instruction may be executed to load the status register. LST does not
assume status bits are on page one, so the DP must be set to one for the LST
instruction to access status bits stored on page one. The interrupt mode
(INTM) bit cannot be changed by the LST instruction. However, all other
status bits can be modified by this instruction.
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3.7 Input/Output Functions

The TMS320C1x implements a variety of different 1/O functions for use in
communicating with external devices. The 16-bit parallel data bus can be
utilized to perform I/O functions in two cycles using the IN and OUT in-
structions. The 1/O ports are addressed by the three LSBs of the address bus
(PA2-PAQ). In addition, a polling input for bit test and branch operations
(BIO) and an interrupt input (INT) have been incorporated for increased sys-
tem flexibility. An external flag output pin (XF) is available on the

170 désign is simplified by héving 1/0 treated the same way as memory. |/0
devices are mapped into the 1/0 address space using the processor’s external
address and data buses in the same manner as memory-mapped devices.

Input/output of data to and from a peripheral is accomplished by the IN and
OUT instructions. Data is transferred over the 16-bit data bus to and from
data memory by two independent strobes: data enable (DEN) and write enable
(WE).

The bidirectional external data bus is always in the high-impedance state, ex-
cept when WE is active (low), or during an IN instruction from port O or port
1 on the TMS 320C17/E17 (see Section 3.7.1). WE goes low during the
first cycle of the OUT instruction and the second cycle of the TBLW instruc-
tion.

Eight 1/O addresses are available on the TMS32010/C10 and
TMS320C15/E15 for interfacing to peripheral devices: eight 16-bit multi-
plexed input ports and eight 16-bit multiplexed output ports (see Figure
3-14). Since the system control register, serial port transmit and receive reg-
isters, and companding hardware have been mapped into I/0 ports O and 1,

only six input and six output ports are available on the TMS320C17/E17 for
interfacing to peripheral devices.
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Figure 3-14. TMiS320C1x External Device Interface

3.7.1 Input/Output Operation

The three port address pins (PA2-PAQ) output the port address during IN and
OUT instructions. Execution of an IN instruction generates the DEN strobe for
transferring data from a peripheral device to the data RAM (see Figure 3-15).
The IN instruction is the only instruction for which DEN will become active.
Execution of an OUT instruction generates the WE strobe for transferring data
from the data RAM to a peripheral device (see Figure 3-16). WE becomes ac-
tive only during the OUT and TBLW (table write) instructions (see Appendix
A for timing information).
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Figure 3-15. Input Instruction Timing

DATA OUT
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S

Figure 3-16. OQutput Instruction Timing

While the three multiplexed LSBs of the address bus (PA2-PAQ) are used as
a port address by the IN and OUT instructions, the remaining higher-order bits
of the address bus (A11 through A3) are held at logic zero during execution
of these instructions.

On the TMS320C17/E17, the port address pins PA2-PAO output the three LSBs
of the program counter during IN and OUT instructions (see Section 3.13). These
three.pins address the serial port, companding hardware, and coprocessor port
(TMS320C17/E17). During reset, the pins along with the program counter are
synchronously cleared to zero during the cycle following RS low. Because all
program and data memory are contained on-chip, only these three address
lines are output from the device. The memory enable (MEN) signal is not imple-
mented on the TMS320C17/E17 devices since all instruction execution is from
on-chip program ROM.

The bidirectional external data bus on the TMS320C17/E17 is always in the
high-impedance state, except when WE is active (low) or during an IN instruc-
tion from port 0 or port 1. WE goes low during the first cycle of the OUT in-
struction to provide the write strobe for writing data to a peripheral.
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On the TMS320C17/E17, the system control register (see Section 3.12), serial
port transmit and receive registers (Sections 3.9.1 and 3.9.2), and the compan-
ding hardware (Section 3.10) have been mapped into 1/O ports 0 and 1. During
an OUT or IN instruction to port 0 or port 1, data appears on the external data

.bus (D15-D0). The data bus is not in the high-impedance state while acces-

sing these dedicated 1/0O ports. Peripheral device interface should be to port
addresses 2 through 7 to prevent bus conflicts with the system control regis-
ter and serial port. Six 16-bit multiplexed input ports and six 16-bit multiplexed
output ports are available for interfacing to peripheral devices.

3.7.2 Table Read/Table Write Operation
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The TBLR and TBLW instructions allow words to be transferred between
program and data spaces. TBLR is used to read words from on-chip ROM or
off-chip program ROM/RAM into the data RAM. TBLW is used to write words
from on-chip data RAM to off-chip program RAM on the
TMS32010/C10/C15. External program memory cannot be addressed on the
TMS320C17/E17.

Execution of the TBLR instruction generates MEN strobes to read the word
from program memory (see Figure 3-17). Execution of a TBLW instruction
generates a WE strobe (see Figure 3-18). Note that the data bus will be driven
and the WE strobe will be generated even if the device is in the microcomputer
mode and a TBLW is performed to a program location residing in on-chip
ROM.

The dummy prefetch in Figure 3-17 and Figure 3-18 is a prefetch of the in-
struction following the TBLR or TBLW instruction and is discarded. The in-
struction following TBLR or TBLW is prefetched again at the end of the TBLR
or TBLW instruction.

TBLR DATA TRANSFERRED NEXT
INSTRUCTION DUMMY FROM PROGRAM INSTRUCTION
PREFETCH PREFETCH MEMORY PREFETCH
-— > .- - - - >

v [ 1 [ [1 I

Figure 3-17. TBLR Instruction Timing
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TBLW DATA TRANSFERRED  NEXT
INSTRUCTION DUMMY TO PROGRAM  INSTRUCTION
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- - -

| [1 F' | |

Figure 3-18. TBLW Instruction Timing

The MEN, DEN, and WE interface stobes are mutually exclusive. There are some
very important considerations for those designs that utilize program memory.
Since the OUT and TBLW instructions use only the WE signal to indicate valid
data, these instructions cannot be distinguished from one another on the basis
of the interface strobes. Execution of TBLW instructions will write data to
peripherals, and execution of OUT instructions will overwrite program memory
locations O through 7. Since it is impossible to use TBLW to uniquely write
to program memory locations O through 7, it is advisable to avoid mapping
both 1/0 and external program RAM into locations O through 7.

3.7.3 General-Purpose 1/0O Pins (BIO and XF)

The TMS320C1x_provides two general-purpose pins which are software-
controlled. The BIO pin is a branch control input pin for all of the TMS320C1x
processors. The XF pin on the TMS320C17/E17 is an external flag output pin.

The BIO pin is an external pin that supports bit test and branch operations.
When the BIO input pin is active (low), execution of the BIOZ instruction
causes a branch to occur. The BIO pin is useful for monitoring peripheral de-
vice status. It is especially useful as an alternative to using an interrupt when
time-critical loops must not be disturbed.

For systems using asynchronous inputs to the BIO pin on a TMS32010
(NMOS) device, external hardware is required to ensure proper execution of
the BIOZ instruction. This hardware synchronizes the BIO input signal with
the rising edge of CLKOUT on the TMS32010. See Appendix A for informa-
tion regarding this system design consideration.

The XF (external flag) output pin, specific to the TMS320C17/E17, is an exter-
nal logic output flag. Programmed through control register bit 10 (CR10), this
pin is the direct output of the CR10 latch. When the CR10 bitis setto a1,
the XF pin is set to a logic high; when CR10 is reset to a 0, the XF pin is driven
low.
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3.8 Interrupts
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The TMS320C1x provides an external interrupt input for communication with
time-critical external operations. The interrupt can be generated either by ap-
plying a negative-going edge or a logic low level to the interrupt input pin,
On the TMS320C17/E17, there are also three additional internal interrupts,
which are generated by the two serial ports. All interrupts on the TMS320C1x
are maskable through the use of the status register interrupt mode bit and
various: mask bits. When operating in the coprocessor mode on the
TMS320C17/E17, the external interrupt and BIO will be ignored.

For systems using asynchronous inputs to the interrupt (INT) pin on a
TMS32010 (NMOS) device, external hardware is required to ensure proper
processing of interrupts. This hardware synchronizes the INT input signal with
the rising edge of CLKOUT on the TMS32010. See Appendix A for informa-
tion regarding this system design consideration.

A simplified diagram of the internal interrupt circuitry for TMS320C1x CMOS
devices is shown in Figure 3-19. Note that the TMS32010 requires external
synchronizing flip-flops on interrupts and BiO. These synchronizing flip-flops
are not required on the TMS320C10/C15/C17.

When interrupts are enabled, an interrupt becomes active either due to a low-
voltage input on the INT pin or when a negative edge has been latched into
the interrupt flag (INTF). If the interrupt mode register (INTM) is set to zero,
an interrupt active signal to the internal interrupt processor becomes valid.

The processor begins interrupt servicing by causing a branch to location 2 in
program memory. Interrupt servicing will be delayed in each of the following
cases:

1)  Until the end of all cycles of a multicycle instruction,

2)  Until the instruction following the MPY or MPYK instruction has com-
pleted, or

'3)  Until the instruction following the EINT instruction has been executed

(when interrupts have been previously disabled). This allows the RET
instruction to be executed after interrupts become enabled at the end of
an interrupt routine.

When an interrupt service routine begins, the TMS320C1x transmits an inter-
rupt acknowledge signal that presets the INTM register (disabling interrupts)
and clears the interrupt flag (INTF). A DINT instruction or a hardware reset
will also set the INTM register to one (see Figure 3-19), disabling interrupts,
while the EINT instruction will clear the INTM register (set to zero). Interrupts
will continue to be latched while they are disabled. Note that DINT or EINT
do not affect the INTF. ’
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Figure 3-19. TMS320C1x Simplified Interrupt Logic Diagram

Figure 3-20 shows the instruction sequence that occurs once an interrupt
becomes active. The dummy fetch is an instruction that is fetched but not ex-
ecuted. This instruction will be refetched and executed after the interrupt
routine is completed.
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Figure 3-20. Interrupt Timing

The TMS320C17/E17 has four maskable interrupts: EXINT (TMS320C17/E17),
FSR, FSX, and FR. On these devices, the TMS32010/C10/C15 interrupt func-
tion has been expanded to fully support the serial-port interface. An interrupt
latch and multiplexer is used to generate the master interrupt signal, which
functions identically to the INT interrupt on the TMS32010. Thus, all the mas-
kable interrupts have the same priority and require the use of interrupt pol-
ling techniques when multiple interrupts are enabled.

Two steps must be taken to enable an active interrupt to the device. First, the
individual interrupt must be enabled by writing a logic 1 to the appropriate
system control register bit (CR7-CR4). Then, the master interrupt circuitry is
enabled via the EINT instruction. In a reset initialization routine, the interrupt
flag bits (CR3-CRO0) should be cleared before the EINT instruction to insure
that a false interrupt does not occur (see Section 3.12 for detailed interrupt
bit descriptions).

The interrupt latch synchronizes all interrupts to the device output clock
(CLKOUT). A block diagram of the interrupt latch and multiplexer is shown
in Figure 3-21. The external interrupt (EXINT) is either an asynchronous input
to the device for external control or a master processor interrupt signal.
The other three interrupts are all associated with the serial port framing signals,
although the external framing pulse interrupts (FSX and FSR) may be used as
system interrupts when not being utilized by the serial port.
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Figure 3-21. Interrupt Latch and Multiplexer

Due to the asynchronous operation of the interrupts, the time between the
occurrence of an active interrupt signal and the device actually vectoring to
ROM location 2 is four CLKOUT cycles (see Appendix A for further timing

information).
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3.9 Serial Port (TMS320C17/E17)
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Two of the 1/0 ports on the TMS320C17/E17 are dedicated to the serial port
and companding hardware. I/O port 0 is dedicated to control register 0, which
controls the serial port, interrupts, and companding hardware. l/O port 1 acces-
ses control register 1, as well as both serial port channels, and the compan-
ding hardware. The six remaining 1/O ports are available for external parallel
interfaces.

The on-chip dual-channel serial port, provided on the TMS320C17/E17, is capa-
ble of full-duplex serial communications and direct interface to combo-codec
PCM systems, serial A/D converters, and other serial systems. The interface
signals are directly compatible with codecs and many other serial devices,
and require a minimum of external hardware. An example of a codec interface
is provided in Section 6.2. For additional information on combo-codecs, refer
to the TCM29C13/C14/C16/C17 Combined Single-Chip PCM Codec and Filter
Data Sheet.

Two receive and two transmit registers are mapped into I/O port 1, and oper-
ate with 8-bit data samples. Either internal or external framing signals for serial
data transfers (MSB first) are selected via the system control register. The
serial port clock, SCLK, provides the bit timing for transfers with the serial port,
and may be either an input or output. A framing pulse signal provides framing
pulses for combo-codec circuits, a sample clock for voice-band systems, or a
timer for control applications. The serial port is accessed through IN and OUT
instructions. A block diagram of the serial port and companding hardware is
shown in Figure 3-22.
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Figure 3-22. Serial Port and Companding Hardware

3.9.1 Receive Registers

Two receive registers are mapped into 1/0 port 1 via the port decode logic.
Data is ciocked into the shift registers on the next eight negative serial clock
(SCLK) transitions after an active framing pulse is detected. SCLK controls
the bit-level timing for all serial-port data transfers. Note that the MSB is al-
ways shifted first.

On an active framing pulse, serial data is clocked into the receive registers from
the DR pins. Channel O data is received in shift register RSO from pin DRO,
and channel 1 data is received in shift register RS1 from pin DR1. To read the
data from the registers, an IN instruction is executed from port 1. On the first
IN instruction after a framing pulse, channel 0 data is output onto the external
data bus. On the second IN instruction, channel 1 data is output onto the
external data bus.

An active framing pulse initiates the receive operation, as shown in Figure
3-23. External framing pulses (FSR) are active low, and the internal framing
(FR) signal is active high. With external framing (FSR), the falling edge of the
framing pulse gates the serial-port ciock to the receive shift registers, and the
data is clocked into the shift registers on the next eight consecutive negative
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transitions of the clock. The rising edge of the framing pulse transfers the data
from the receive shift registers to the receive registers and sets the FSR flag
bit (CR1) in the system control register, causing an interrupt to occur if the
FSR is enabled.

SCLK 1 2 3 M

Figure 3-23. Receive Timing for External Framing

Internal framing (FR) pulses can be selected in either fixed data-rate or vari-
able data-rate modes for combo-codec interface. With the fixed data-rate
mode, the FR pulse is one SCLK cycle wide, and appears in the cycle pre-
ceding the first data bit. The falling edge of the pulse initiates both the
transmit and receive operations, as shown in Figure 3-24. Received data is
clocked into the receive shift registers on the next eight consecutive negative
transitions of the clock. After data bit 8 has been received, data is transferred
from the receive shift registers to the receive registers, and an interrupt is
generated when the FR flag bit (CR3) is set in the system control register, thus
causing an interrupt to occur if enabled.

seLx W\_/—_\_“/_\_/__\_
FR / \
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Figure 3-24. Fixed-Data Rate for Internal Framing

In the variable data-rate mode shown in Figure 3-25, the FR pulse is eight
SCLK cycles wide, and appears in the same SCLK cycle as the first data bit.
The rising edge of the pulse initiates the transmit and receive operations. The
falling edge of the pulse transfers data from the receive shift registers to the
receive registers and sets the FR flag bit (CR3) in the system control register,
causing an interrupt to occur if enabled.
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DR1, DRO

Figure 3-25. Variabie-Data Rate for Internal Framing

3.9.2 Transmit Registers

Two transmit registers are mapped into I/O port 1 via the port decode logic.
The transmit registers are connected to the port 1 data bus in a FIFO (first in,
first out) configuration. On the first QUT instruction to port 1 after a framing
pulse, the data to be transmitted is put into transmit register TRO. On the next
framing pulse, the TRO contents are latched into transmit shift register TSO and
the data is transmitted on channel O (pin DX0) on the next eight positive
transitions of the serial-port clock (SCLK), as shown in Figure 3-26. Data
sent to port 1 is always put into the transmit registers. Only when control
register bit 11 (CR11) is high will the data be enabled onto the transmit pins.
The transmit pins are in the high-impedance state when not transmitting.

sCLK 1 2 3 M
FSX \ N /

199
DX1, DX0 m 1 X 2 X 3 :D( 8 >—

Figure 3-26. Transmit Timing for External Framing

When two OUT instructions to port 1 are executed between framing pulses,
both transmit registers are loaded with data for transmission. The first QUT
instruction loads data into transmit register TRO. The second OUT pushes the
data from TRO into TR1 and puts the new data into TRO. On an active framing
pulse edge, the transmit register contents are latched into the transmit shift
registers and the data clocked out on the next eight consecutive positive
transitions of SCLK. Thus, for single-channel operation, only one OUT in-
struction to port 1 should be executed between framing pulses to insure data
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transmission on channel 0. Only TRO may be read back to the serial-port data
bus by an IN instruction. This feature is used for the parallel companding
mode.

Both transmit channels always output data on an active framing pulse when
CR11 is high. During single-channel operation (using channel 0), channel 1
still transmits the data from transmit register TR1. Transmit channel 1 cannot
be disabled during single-channel operation.

3.9.3 Timing and Framing Control

The serial-port timing and framing control is shown in Figure 3-27. The seri-
al-port clock (SCLK) provides the timing control for data transfers with the
serial port. SCLK may be configured as either an input or output through the
control register. As an input, SCLK is an external serial system clock that
provides the framing synchronization and timing for the serial port. As an
output, SCLK provides the system clock for standalone serial applications and
is derived from the microcomputer system clock (X2/CLKIN).

CR27-CR24 N
CR15 FSR FSX CR23-CR16

X2/CLKIN =~

a N

tSXLD =
tRCLK =
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. FRAME MUX FR
+10/12/14/16/20/24/28/32 e AND OVIBER / spomt F Mo FR

CR28

Y

seLK | SERIAL-PORT }|—sxLD?t
TIMING CONTROL | ReLki

Load transmit shift registers (TS0,TS1) from transmit registers (TRO,TR1)
Load receive registers (RRO,RR1) from receive shift registers (RSO,RS1)

Figure 3-27. Serial-Port Timing and Framing Control

The serial-port clock prescaler determines the divide ratio for SCLK when
configured as an output. The TMS 320C17/E17 system clock (X2/CLKIN)
is input to the prescaler, along with control register bits CR27-CR24. Table
3-4 shows the prescale divide ratios selectable as divide by 10, 12, 14, 16, 20,
24, 28, and 32 through system control register bits CR27-CR24.
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Table 3-4. Serial Clock (SCLK) Divide Ratios (X2/CLKIN = 20.48 MHz)

CR27 CR26 CR25 CR24 DIVIDE RATIO SCLK FREQUENCY UNIT
0 0 0 0 32 0.640 MHz
0 0 0 1 28 ) 0.731 MHz
0 0 1 0 24 0.853 MHz
0 1 0 0 20 1.024 MHz
1 0 0 0 16 1.280 MHz
1 -0 0 1 14 1.463 MHz
1 0 1 0 12 1.706 MHz
1 1 0 0 10 2.048 MHz

The divide ratios are available only for SCLK when it is configured as an out-
put from the device (see Section 3.12 for control register bit configurations).
These bits determine the divide ratio, which is equal to SCLK/{(CNT + 2)
where CNT is the binary value of CR23-CR16.

The frame multiplexer determines which framing pulses cause serial-port data

transfers to occur and configures the internal framing pulse (FR) frequency. .
The inputs to the multiplexer are SCLK, control register bit 9 (CR9), control

register bits CR23-CR16, external transmit framing (FSX) pulse, and external

receive framing (FSR) pulse. The outputs of the multiplexer go to the serial-

port control for receive and transmit timing generation for the serial-port reg-

isters and to the FR multiplexer for determining which FR framing pulse will

be generated.

The outputs of the frame counter are input to the FR multiplexer for selection
of long or short FR pulses. The short FR pulse provides fixed data-rate fram-
ing pulses for standalone serial interface to the Texas Instruments TCM29Cxx
family of combo-codec circuits. The long FR framing pulse provides variable
data-rate framing pulses to the combo-codec.

The FR frequency is determined at the beginning of the framing pulse cycle.
When reconfiguring the frequency, the upper control register bits determine
the new divide ratio. However, the new frequency is not implemented until
the next FR framing pulse. '

3-41



Architecture - Companding Hardware

3.10 Companding Hardware (TMS320C17/E17)

3-42

The on-chip companding hardware enables the TMS320C17/E17 to compand
(COMpress and exPAND) data in either u-law or A-law format with either sign-
magnitude or two’s-complement numbers.

The standard employed in the United States and Japan is u-law companding.
The European standard is referred to as A-law companding. Configuration
and connections of the encoder and decoder (see Figure 3-22) are controlled
through the system control register.

No bias is required when operating in two’'s-complement notation and for
A-law companding. For p-law encoding, a bias of 33 must be added to the
sign magnitude before encoding; likewise, after u-law decoding, the bias of
33 must be subtracted from the sign magnitude. Upon reset, the
TMS320C17/E17 is programmed to operate in sign-magnitude mode. This mode
can be changed by modifying control register bit 29 (CR29). For further infor-
mation on companding, see the TCM29C13/TCM29C14/TCM29C16/TCM29C17
Combined Single-Chip PCM Codec and Filter Data Sheet. |f the companding
hardware is not used but software companding is desired, the application
report, “Companding Routines for the TMS32010/TMS32020,” in the book,
Digital Signal Processing Applications with the TMS320 Family, describes algo-
rithms that accomplish this.

The specification for p-law and A-law log PCM is part of the CCITT G.711
recommendation. Part of the coding format specifies certain bits to be inverted
prior to transmission or upon receipt of transmitted data. For the p-law format,
all of the data bits are inverted. Refer to the data sheet in Appendix A for di-
agrams of the codec interface circuits used for pu-law and A-law formats on the
TMS320C17/E17 devices.

Data may be companded via four modes: serial-port encode, serial-port de-

_code, parallel encode, and parallel decode. In the serial mode, transmitted data

is encoded according to the specified companding law, and received data is
decoded to sign-magnitude format. In the parallel modes, encoding or de-
coding is performed on data from the RAM for computations within the de-
vice.

Table 3-5 shows the control register bit combinations that determine the serial
or parallel modes of the companding hardware operation. Note that the serial
and parallel companding modes require separate control register settings.
When using the serial mode, parallel companding is not available unless the
control register is reconfigured.
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Table 3-5. Serial- and Parallel-Mode Bit Configurations

CR BIT # MODE OF OPERATION
13 12 1

0 0 0 Parallel mode. Encoder and decoder are disabled. No operation
performed on data written to or read from port 1.

(0] 0 1 Serial mode. Encoder and decoder are disabled. The transmit regis-
ters are enabled for data transmission on an active framing pulse. The
8-bit value written to port 1 is transmitted and the 8-bit value in the
receive register is read with an IN instruction from port 1.

0 1 0 Parallel encode. Encoder is enabled. A linear sample written to port
1 with an OUT instruction is compressed to 8-bit log PCM. The 8-bit
value is then read from port 1 with an IN instruction.

0 1 1 Serial encode. Encoder is enabled. A linear sample written to port 1
is compressed to 8-bit log PCM and put into the transmit register for
transmission on an active framing pulse.

1 0 0 Parallel decode. Decoder is enabled. An 8-bit log PCM data written
to port 1 is decoded to linear notation with an IN instruction from
port 1.

1 0 1 | Serial decode. Decoder is enabled. An 8-bit log PCM sample from
one of the receive registers is expanded to linear notation with an IN
instruction from port 1.

1 1 0 Parallel encode and decode. Encoder and decoder enabled. This is
not a usual state, since data is compressed on an OUT instruction to
port 1 and then expanded with the IN instruction from the port.

1 1 1 Serial ‘encode and decode. Encoder and decoder enabled. Linear
data written to port 1 is encoded and put into one of the transmit
registers for serial transmission. The 8-bit log PCM data from one of
the receive registers is decoded with an IN instruction from port 1.

3.10.1 u-Law/A-Law Encoder

The encoder compresses linear PCM (13 bits of dynamic range for u-law for-
mat or 12 bits of dynamic range for A-law format) to 8-bit logarithmic PCM.
Selection between p-law or A-law conversion is determined by the system
control register bit 14 (CR14). This bit is input directly to the encoder to de-
termine the conversion law to be used. The p-255 law conversion is per-
formed if CR14 is logic 0, and A-law conversion if CR14 is logic 1. Data is
input to the encoder from the data bus with an OUT instruction to port 1. The
converted 8-bit log PCM sample is then presented to the multiplexer (MUX2
shown in Figure 3-22). The multiplexer controls whether the encoder output
or the eight low-order data bus bits are input to transmit register TRO of the
serial port. Note that the transmit registers are connected to the port 1 data
bus in a FIFO (first in, first out) configuration. The encoder compresses data
written to port 1 at all times, but the output will be enabled to the TRO only
when CR12 is logic 1.

In the serial-encode mode, data written to port 1 is encoded, and the value
put into transmit register TRO. The transmit register is then loaded with the
8-bit value on an active framing pulse, and the 8 bits are clocked out on the
positive edge of SCLK.
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For the parallel-encode mode, the linear-PCM value is written to port 1 with
an OUT instruction. The encoded 8-bit value is then stored in TRO. An IN
instruction from port 1 reads TRO to the data bus for storage in RAM. Care
should be taken to have only one OUT and one IN instruction to port 1 for
each data sample in the parallel-encode mode. If there are two OUT in-
structions to port 1, the first sample will be pushed into transmit register TR1,
which cannot be read back to the data bus.

3.10.2 u-Law/A-Law Decoder

3-44

The up-law/A-law decoder converts 8-bit log-PCM samples to linear PCM.
The conversion-law selection is governed by control register bit 14 (CR14).
The p-law conversion is performed if CR14 is logic 0, and A-law conversion
if CR14 is logic 1. Data input to the decoder may come from either the seri-
al-port receive registers or transmit register TRO. The multiplexer (MUX1
shown in Figure 3-22) sends data to the data bus either through the decoder
or directly to the bus. This multiplexer is controlied in part by control register
bit 13 (CR13). If this bit is logic 0, the multiplexer output is sent to the data
bus directly. If the bit is logic 1, the multiplexer output is sent to the data bus
through the decoder.

In the serial-decode mode, received data from the serial-port receive registers
is input to the decoder from the multiplexer, and the received data is decoded
according to either u-law or A-law format.

For the parallel-decode mode, the 8-bit PCM sample to be decoded is written
to port 1 with an OUT instruction. This stores the sample in transmit register
TRO. The sample is then decoded by reading the value from port 1 with an IN
instruction. The IN instruction brings the sample from TRO through the mul-
tiplexer (MUX1) to the decoder, which performs the expansion on the 8-bit
sample. Again, there should be only one OUT and one IN instruction to port
1 for each sample to be decoded in order to avoid losing a sample in transmit
register TR1.
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3.11 Coprocessor Port (TMS320C17/E17)

The coprocessor port on the TMS320C17/E17 provides a direct interface to
most 4/8-bit microcomputers and 16/32-bit microprocessors. The port is
accessed through 1/0 port 5 using IN and OUT instructions. The coprocessor
interface allows the device to act as a peripheral (slave) microcomputer to a
microprocessor, or as a master to a peripheral microcomputer such as the
TMS7042. The coprocessor port is enabled by setting MC/PM and MC low.
 The microcomputer mode is enabled by setting these two pins high. (Note
that the MC/PM and MC pins must be in the same state.)
The 16 data lines are then used for the 6 parallel 16-bit /O ports.

In coprocessor mode, the 16-bit data bus is reconfigured to operate as a
16-bit latched bus interface. Control bit 30 (CR30) in control register 1 is
used to configure the coprocessor port to either an 8-bit or a 16-bit length for
data transfer. When CR30 is high, the coprocessor port is 16 bits wide,
thereby making all 16 bits of the data port available for 16-bit transfers to
16/32-bit microprocessors. When CR30 is low, the port is 8 bits wide and
mapped to the low byte of the data port for interfacing to 4/8-bit microcom-
puters. When operating in the 8-bit mode, both halves of the 16-bit latch can
be addressed by the external device using the HI/LO pin, thus allowing 16-bit
transfers over 8 data lines. This requires two external bus cycles but only one
internal port access. When not in the coprocessor mode, port 5 can be used
as a generic |/0 port.

Interprocessor communication through the coprocessor interface is accom-
plished asynchronously as in memory-mapped /O operations. For a write to
the TMS320C17/E17, the external processor lowers the WR line and places
data on the bus (see Figure 3-28). It then raises the WR line to clock the data
into the on-chip latch. The falling edge of WR clears the RBLE (receive buffer
latch empty) fiag, and the rising edge of WR automatically creates an interrupt
to the TMS320C17. (Note that when reading or writing in the 8-bit mode,
accesses to the high byte will not activate an interrupt or Bi0.) The external
processor reads from the latch by driving the RD line active low, thus enabling
the output latch to drive the latched data (see Figure 3-29). When the data
has been read, the external device will again bring the RD line high. This ac-
tivates the BIO line to signal that the transfer is complete and the latch is
available for the next transfer. The falling edge of RD resets the TBLF (transmit
buffer latch full) flag. Note that the EXINT and BIO lines are reserved for co-
processor interface and cannot be driven externally when in the coprocessor
mode.
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Figure 3-28. External Write Timing to the Coprocessor Port
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RD \ /
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Figure 3-29. External Read Timing from the Coprocessor Port

Examples of the use of a coprocessor interface are provided in Section 6.5 and
the data sheet of Appendix A.
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3.12 System Control Register (TMS320C17/E17)

The TMS320C17/E17 provides additional hardware for interfacing ease in serial
applications. This hardware is interfaced to the micro-computer portion of the
device via the external data bus (D15-D0). The additional hardware is control-
led by a 32-bit system control register (see Figure 3-30), thereby eliminating
any additions to the TMS320 instruction set.

CR(10) XF DATA BUS (D15-D0)

L / 16
CR(15-0) 16 LOWREEGFS%ROL -’

RESET  INTERRUPT
FLAG BITS

16

CR(31-16) ~+——]

UPPER CONTROL 16
REGISTER

Figure 3-30. System Control Register

The lower 16 register bits (CR15-CRO0) are accessed through port 0. These
bits control interrupts, serial-port configuration, the external logic output flag,
internal and external framing pulses, and the p-law/A-law encoder and de-
coder. The interrupt inputs (INT, FSX, FSR, and FR) are synchronized to
CLKOUT and control the interrupt flag bits (CR3-CRO). The interrupts are
maskable via the interrupt enable bits (CR7-CR4). Bit 8 (CR8) controls 1/O
port 1 configuration.

The upper 16 bits (CR31-CR16) are accessed through port 1. These bits
control the internal framing pulse (FR) output frequency, serial-clock divide
ratios, pulse-width control for the FR framing pulse, and companding con-
versions. On the TMS320C17/E17, the bit width of the coprocessor mode is
controlled by CR30.

The external data bus provides on-chip communication with the system con-
trol register, serial port, companding hardware, and coprecessor port. With a
write to port 0, the lower control register is addressed and data latched into
the register by the rising edge of the write enable (WE) signal. To write to the
upper control register bits, bit 8 of the lower control register must be set to
logic 1. If CR8 is logic 0, a write to port 1 accesses the serial port and com-
panding hardware.

Table 3-6 gives a detailed description of the control register bits and their
operation. The control register bits are configured through OUT instructions
to port 0 and port 1. WE goes low during the first cycle of the OUT instruction,
enabling the port data onto the external data bus. The control register bits are
fatched on the rising edge of WE. There is a propagation delay time for these
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bits to access the appropriate hardware (see Appendix A for timing informa-
tion). An allowance for this write delay should be made when reconfiguring
the control register. The most critical factor is receiving an external framing
pulse while reconfiguring the control register. If an external framing pulse is
received at that time, it may not be detected and the serial-port registers will
contain random data (see Section 3.9 for further details).

Table 3-6. Control Register Bit Definitions

CR BIT #

DESCRIPTION

3-0

Interrupt flags. When an interrupt occurs on any of the four maskable interrupts, the
appropriate flag is set to logic 1 whether the interrupt is enabled or disabled. To clear
the flag, a logic 1 is written to the appropriate bit by an OUT instruction to port 0.
The bits may be read by an IN instruction to determine interrupt sources when multiple
interrupts are enabled.

Bit #
0
1
2
3

mhmm T

3399 3

Xzl 3| @
=

7-4

Interrupt enable bits. When one of these bits is set to logic 1, an interrupt occurring
on that input sets the appropriate flag and activates the microcomputer interrupt cir-
cuitry. When disabled, the interrupt flag is still set, but the device is not interrupted.

Bit #
4 EXINT
5 FSR

6 FSX
7 FR

Flag

Port 1 control bit. When set to logic O, 1/0 port 1 is connected to either the serial-port
registers or the companding hardware, depending on the state of CR11. When set to
logic 1, 1/0 port 1 is connected to the upper control register. This bit must be set with
an OUT instruction to port O before port 1 may access the upper control register bits
CR31-CR16.

External framing enable. This bit controls which framing pulses cause serial port data
transmission to occur. When set to logic O, serial port transmit and receive operations
occur simultaneously and are contrelled by the internal framing (FR) pulse. When set
to_logic 1, transmit operations are controlled by the external transmit framing pulse
(FSX) and receive operations are controlled by the external receive framing pulse
(FSR).

10

XF output latch. This bit controls the logic level of the external logic output flag (XF)
pin. A write delay time occurs when reconfiguring this latch (see Appendix A for
timing information).

1"

Serial port enable. When set to logic 0, the transmit and receive registers are disabled
in order to use the parallel companding mode. When set to logic 1, the serial port
registers are enabled and data transfers with the serial port are via OUT and IN in-
structions to port 1. A reset sets this bit to zero.
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Table 3-6. Control Register Bit Definitions (Concluded)

CR BIT #

DESCRIPTION

12

p-law/A-law encoder enable. When set to logic 0, the encoder is disabled. When set
to logic 1, the encoder is enabled, and data written to port 1 is p-law or A-law en-
coded. The encoder must be enabled for compression of linear data in both the serial
and parallel modes of operation.

13

p-law/A-law decoder enable. When set to logic O, the decoder is disabled. When set
to logic 1, the decoder is enabled, and data read from port 1 is p-law or A-law de-
coded to linear format. The decoder must be enabled for expansion of Iog PCM data
in both the serial and parallel modes of operation.

14

u-law or A-law encode/decode select. When set to logic 0, the companding hardware
performs p-255-law conversion. When set to logic 1, the companding hardware per-
forms A-law conversion.

15

Serial clock control. When set to logic 0, the serial port clock (SCLK) is an output,
and its frequency is derived from the microcomputer system clock, X2/CLKIN. When
set to logic 1, SCLK is an input that provides the clock for all data transfers with the
serial port and the frame counter in timing logic. A reset sets this bit to one.

23-16

Frame counter modulus. The value of these bits determines the divide ratio for the
FR output frequency. The FR frequency is given as SCLK/(CNT + 2) where CNT is a
binary value -of CR23-CR16. The following should be noted when configuring the
divide ratio:

1. All ones in CR23-CR16 indicate a degenerative state and shouid be avoided.
2. Bits are operational whether SCLK is an input or an output.
3. CNT must be greater than seven.

27-24

SCLK prescale control bits. As an output, SCLK is derived from the microcomputer
system clock, X2/CLKIN. Prescale divide ratios are selectable through these control
bits (see Section 3.9.3 for the available divide ratios).

28

FR pulse-width control. This bit controls the pulse width of the FR output to select
data-transfer rates with combo-codec circuits. When set to logic 0, the FR output
framing pulse is one SCLK cycle wide for the fixed data-rate mode and appears in the
serial-clock cycle preceding the first serial-bit transmission. When set to logic 1, the
FR output framing pulse is eight SCLK cycles wide for the variable data-rate mode.
In this mode, the framing pulse is active high for the duration of the eight bits trans-
mitted and received.

29

Two’'s-complement p-law/A-law conversion enable (TMS320C17/E17). When set
to logic O, sign-magnitude companding is enabled. When set to logic 1, two’s-
complement companding is enabled.

30

8/16-bit length coprocessor mode select (TMS320C17/E17). When set to logic O,
the 8-bit byte length is used. When set to logic 1, the 16-bit word length is selected.

31

Reserved for future expansion. This bit should be set to zero.
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4. Assembly Language Instructions

The instruction set of the TMS320C1x (first-generation TMS320) processors
supports numeric-intensive signal processing operations and general-purpose
applications, such as high-speed control. The instruction set shown in Table
4-2 consists primarily of single-cycle, single-word instructions, permitting
execution rates of up to 6.25 million instructions per second. Only infrequently
used branch and 1/0 instructions are muiticycle.

To support DSP operations, the TMS320C1x instruction set includes a
single-cycle muitiply. For ease of use in Harvard architecture, table read
(TBLR) and table write (TBLW) instructions are provided, which allow infor-
mation transfer between data and program memory. The IN and OQUT in-
structions permit a data word to be read into the on-chip RAM in only two
cycles. The SUBC (conditional subtract) instruction performs the shifting and
conditional branching necessary to implement a divide efficiently and quickly.

This section describes the TMS320C1x assembly language instructions. In-
cluded in this section are the following major topics:

° Memory Addressing Modes (Section 4.1 on page 4-2)
Direct addressing
Indirect addressing (using two auxiliary registers)
Immediate addressing

L Instruction Set (Section 4.2 on page 4-7)
Symbols and abbreviations used in the instructions
Instruction set summary (listed according to function)

® Individual Instruction Descriptions (Section 4.3 on page 4-11)
Presented in alphabetical order and providing the following:
- Assembler syntax
- Operands
- Execution
- Encoding
- Description
- Words
- Cycles
- Example(s)
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4.1 Memory Addressing Modes

The TMS320C1x instruction set provides three memory addressing modes:

® Direct addressing mode
{ Indirect addressing mode
° Immediate addressing mode.

Both direct and indirect addressing can be used to access data memory. Direct
addressing concatenates seven bits of the instruction word with the 1-bit data
memory page pointer to form the 8-bit data memory address. Indirect ad-
dressing accesses data memory through the two auxiliary registers. In imme-
diate addressing, the data is based on a portion of the instruction word(s).
The following sections describe each addressing mode and give the opcode
formats and some examples for each mode.

4.1.1 Direct Addressing Mode

4-2

In the direct memory addressing mode, the instruction word contains the
lower seven bits of the data memory address (dma). This field is concatenated
with the one-bit data memory page pointer (DP) register to form the full 8-bit
data memory address. This implements a paging scheme in which the first
page contains 128 words and the second page contains 16/128 words. In a
typical application, infrequently accessed system variables, such as those used
when performing an interrupt routine, are stored on the second page. The
7-bit address in the instruction points to the specific location within that data
memory page. The DP register is loaded through the LDP (load data memory
page pointer), LDPK (load data memory page pointer immediate), or LST
(load status bits from data memory) instructions. The data page pointer is part
of the status register and thus can be stored in data memory.

Note:

The data page pointer is not initialized by reset and is therefore undefined
after powerup. The TMS320C1x development tools, however, utilize de-
fault values for many parameters, including the data page pointer. Because
of this, programs that do not explicitly initialize the data page pointer may
execute improperly depending on whether they are executed on a
TMS320C1x device or using a development tool. Thus, it is critical that
all programs initialize the data page pointer in software.

Figure 4-1 illustrates how the 8-bit data address is formed.
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INSTRUCTION
REGISTER (IR)

8-BIT DATA ADDRESS

Figure 4-1. Direct Addressing Block Diagram

Direct addressing can be used with all instructions except CALL, the branch
instructions, immediate operand instructions, and instructions with no oper-
ands. The direct addressing format is as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[ Opcode l0 ] dma

Bits 15 through 8 contain the opcode. Bit 7 = 0 defines the addressing mode
as direct. Bits 6 through O contain the data memory address (dma), which can
directly address up to 128 words (1 page) of data memory. Use of the data
memory page pointer is required to address the full data memory space.

Example of Direct Addressing Format:

ADD 9,5 Add to accumulator the contents of data memory location
9 left-shifted 5 bits.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 0 o o 1+ o 1JofJo o o 1 o o 1]

The opcode of the ADD 9,5 instruction is >05 and appears in bits 15 through
8. The notation >nn indicates nn is a hexadecimal number. The shift count
of >5 appears in bits 11 through 8 of the opcode. The data memory address
>09 appears in bits 6 through 0.
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4.1.2 Indirect Addressing Mode
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Indirect addressing forms the data memory address from the least significant
eight bits of one of the two auxiliary registers, ARO and AR1. This is sufficient
to address all the data memory; no paging is necessary with indirect address-
ing. The Auxiliary Register Pointer (ARP) selects the current auxiliary register.
The auxiliary registers can be automatically incremented or decremented in
parallel with the execution of any indirect instruction to permit single-cycle
manipulation of data tables. The increment/decrement occurs AFTER the cur-
rent instruction has completed executing. :

In indirect addressing, the 8-bit addresses contained in the auxiliary registers
may be loaded by the instructions LAR (load auxiliary register) and LARK
(load auxiliary register immediate). The auxiliary registers may be modified
by the MAR (modify auxiliary register) instruction or, equivalently, by the in-
direct addressing field of any instruction supporting indirect addressing.
AR(ARP) denotes the auxiliary register selected by ARP.

The following symbols are used in indirect addressing:
* Contents of AR(ARP) are used for data memory address.

- Contents of AR(ARP) are used for address, then decremented after data
memory access.

*+ Contents of AR(ARP) are used for address, then incremented after data
memory access.

The indirect addressing format is as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[ Opcode [1]o]inc]pec] NaART 0 T o TARP]
NOTE: NAR = new auxiliary register control bit.

Bits 15 through 8 contain the opcode, and bit 7 = 1 defines the addressing
mode as indirect. Bits 6 through O contain the indirect addressing control bits.

Bit 3 and bit O control the Auxiliary Register Pointer (ARP). If bit 3 = 0, the
contents of bit O are loaded into the ARP after execution of the current in-
struction. If bit 3 = 1, the contents of the ARP remain unchanged. ARP = 0
defines the contents of ARO as a memory address. ARP = 1 defines the con-
tents of AR1 as a memory address. Note that NAR denotes the new auxiliary
register control bit.

Bit 5 and bit 4 control the auxiliary registers. If bit 5 = 1, the current auxiliary
register is incremented by 1 after execution. If bit 4 = 1, the current auxiliary
register is decremented by 1 after execution. If bit 5 and bit 4 are 0, then
neither auxiliary register is incremented nor decremented. Bits 6, 2, and 1 are
reserved and should always be programmed to 0.

The auxiliary registers may also be used for temporary storage via the load and
store auxiliary register instructions, LAR and SAR, respectively.

The examples that follow illustrate the indirect addressing format. Indirect
addressing is indicated by an asterisk (*) in these examples and in the
TMS320C1x assembler.
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Example 1:

ADD *+.,8

16 14 13 12

Add to the accumulator the contents of the data memory
address defined by the contents of the current auxiliary
register. This data is left-shifted 8 bits before being added.
The current auxiliary register is autoincremented by one.
The opcode is >08A8, as shown below.

11 10 ¢ 8 7 6 b5 4 3 2 1 0

[0 o o o

1ooo|1|o101ooo]

Example 2:
ADD *8

Example 3:
ADD *-.8

Example 4:
ADD *+.,8.,1

Example 5:
ADD *+.,8,0

As in Example 1, but with no autoincrement; the opcode
is >0888.

As in Example 1, except that the current auxiliary register
is decremented by 1; the opcode is >0898.

As in Example 1, except that the auxiliary register pointer
is loaded with the value 1 after execution; the opcode is
>08A1.

As in Example 4, except that the auxiliary register pointer
is loaded with the value O after execution; the opcode is
>08A0.

4.1.3 Immediate Addressing Mode

Included in the TMS320C1x instruction set are five immediate operand in-
structions, in which the immediate operand is contained within the instruction
word. These instructions execute within a single instruction cycle. The length
of the constant operand is instruction-dependent. The immediate instructions

are:

LACK Load accumulator immediate short (8-bit constant)

LARK Load auxiliary register immediate short (8-bit constant)
LARP Load auxiliary register pointer (1-bit constant)

LDPK Load data memory page pointer immediate (1-bit constant)
MPYK Multiply immediate (13-bit constant)

4-5



Assembly Language Instructions - Memory Addressing Modes

4-6

The following examples illustrate immediate addressing format:

Example 1:

MPYK 2781 Multiply the value 2781 with the contents of the T register.
The result is loaded into the P register.

16 14 13 12 11 10 9 8 7 6 65 4 3 2 1 0
[+ 0o o 13-bit constant |

Exa'mple 2:

LACK 221 Load the constant 221 in the lower eight bits of the accu-
mulator right-justified. The upper 24 bits of the accumulator
are zero.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 [o |

IEERERERENER 8-bit constant |
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4.2 Instruction Set

The following sections list the symbols and abbreviations used in the

TMS320C1x

instruction set summary and in the instruction descriptions. The

complete instruction set summary is organized according to function. A de-
tailed description of each instruction is listed in the instruction set summary.

4.2.1 Symbols and Abbreviations

Table 4-1 lists symbols and abbreviations used in the instruction set summary
(Table 4-2) and the individual instruction descriptions.

Table 4-1. Instruction Symbols

SYMBOL

MEANING

A
ACC
ARn

ARP
B
D
DATn
dma

Port address

Accumulator

Auxiliary Register n (ARO and AR1) are predefined assembler symbols
equal to 0 and 1, respectively.)

Auxiliary register pointer

Branch address

Data memory address field

Label assigned to data memory location n

Data memory address

Data page pointer

Addressing mode bit

Interrupt mode bit

Immediate operand field

Indicates nn is a hexadecimal number. (All others are assumed to be
decimal values.)

Overflow (saturation) mode flag bit

Product register

Port address (PAO through PA7 are predefined assembler symbols equal
to 0 through 7, respectively.)

Program counter

Program memory address

Label assigned to program memory location n
1-bit operand field specifying auxiliary register
4-bit left-shift code

Temporary register

Top of stack

3-bit accumulator left-shift field

Is assigned to

An absolute value

User-defined items

Optional items

"Contents of”

Alternative items, one of which must be entered
Angle brackets back-to-back indicate "not equal”.
Blanks or spaces must be entered where shown.
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4.2.2 Instruction Set Summary

Table 4-2 provides the TMS320C1x instruction set summary, arranged ac-
cording to function and alphabetized within each functional grouping. Addi-
tional information is presented in the individual instruction descriptions in the
following section. ‘

The instruction set summary consists primarily of single-cycle, single-word

instructions. Only infrequently used branch and 1/0 instructions are multicy-
cle. »
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Table 4-2. Instruction Set Summary
ACCUMULATOR MEMORY REFERENCE INSTRUCTIONS
Mnemonic and Description Cycles |Words 16-Bit Opcode
MSB LSB
ABS - Absolute value of accumulator 1 1 0111 1111 1000 1000
ADD Add to accumulator with shift 1 1 0000 SSsSs | DDD DDDD
ADDH  Add to high accumulator 1 1 0110 0000 | DDD DDDD
ADDS. Add to low accumulator with 1 1 0110 0001 | DDD DDDD
sign-extension suppressed
AND AND with accumulator 1 1 0111 1001 | DDD DDDD
LAC Load accumulator with shift 1 1 0010 SSSS | DDD DDDD
LACK Load accumuiator immediate short 1 1 0111 111 KKKK KKKK
OR OR with accumulator 1 1 0111 1010 | DDD DDDD
SACH Store high accumulator with shift 1 1 0101 1XXX | bDDD DDDD
SACL Store low accumulator 1 1 0101 0000 | DDD DDDD
SuB Subtract from accumulator with shift 1 1 0001 SSss | DDD DDDD
-SUBC  Conditional subtract 1 1 0110 0100 | DDD DDDD
SUBH Subtract from high accumulator 1 1 0110 0010 | DDD DDDD
SUBS Subtract from low accumulator 1 1 0110 0011 | DDD DDDD
with sign-extension suppressed
XOR Exclusive-OR with low accumulator 1 1 0111 1000 | DDD DDDD
ZAC Zero accumulator 1 0111 1111 1000 1001
ZALH Zero low accumulator and load high 1 1 0110 0101 | DDD DDDD
accumulator
ZALS Zero accumulator and load low 1 1 0110 0110 | DDD DDDD
accumulator with sign-extension
suppressed
AUXILIARY REGISTER AND DATA PAGE POINTER INSTRUCTIONS
" Mnemonic and Description Cycles |Words 16-Bit Opcode
MSB LSB
LAR Load auxiliary register 1 1 0011 100R | DDD DDDD
LARK Load auxiliary register immediate short 1 1 0111 000R KKKK KKKK
LARP Load auxiliary register pointer 1 1 0110 1000 1000 000K
immediate
LDP Load data memory page pointer 1 1 0110 1111 | DDD DDDD
LDPK Load data memory page pointer 1 1 0110 1110 0000 000K
immediate B
MAR Modify auxiliary register 1 1 0110 1000 | DDD DDDD
SAR Store auxiliary register 1 1 0011 OOOR | DDD DDDD
T REGISTER., P REGISTER, AND MULTIPLY INSTRUCTIONS
Mnemonic and Description Cycles |Words 16-Bit Opcode
mMSB LsB
APAC Add P register to accumulator 1 1 0111 1111 1000 1111
LT Load T register 1 1 0110 1010 | DDD DDDD
LTA Load T register and accumulate 1 1 0110 1100 | DDD DDDD
previous product
LTD Load T register, accumulate previous 1 1 0110 1011 | DDD DDDD
product, and move data
MPY Multiply (with T register, store product 1 1 0110 1101 | DDD DDDD
in P register)
MPYK  Multiply immediate 1 1 100K KKKK KKKK KKKK
PAC Load accumulator with P register 1 1 0111 1111 1000 1110
SPAC Subtract P register from accumulator 1 1 0111 1111 1001 0000
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Table 4-2. Instruction Set Summary (Concluded)

BRANCH/CALL INSTRUCTIONS

Mnemonic and Description Cycles |Words 16-Bit Opcode
MSB LSB
B Branch unconditionally 2 2 1111 1001 0000 0000
0000 BBBB BBBB BBBB
BANZ Branch on auxiliary register not zero 2 2 1111 0100 0000 0000
0000 BBBB BBBB BBBB
BGEZ Branch if accumulator > 0 2 2 1111 1101 0000 0000
0000 BBBB BBBB BBBB
BGzZ Branch if accumulator > 0 2 2 1111 1100 0000 0000
0000 BBBB BBBB BBBB
BiOZ Branch on 1/0 status = 0 2 2 1111 0110 0000 0000
0000 BBBB BBBB BBBB
BLEZ Branch if accumulator € 0 2 2 1111 1011 0000 0000
0000 BBBB BBBB BBBB
BLZ Branch if accumulator < 0 2 2 1111 1010 0000 0000
0000 BBBB BBBB BBBB
BNZ Branch if accumulator # 0 2 2 1111 1110 0000 0000
0000 BBBB BBBB BBBB
BV Branch on overflow 2 2 1111 0101 0000 0000
) 0000 BBBB BBBB BBBB
Bz Branch if accumulator = 0 2 2 1111 1111 0000 0000
0000 BBBB BBBB BBBB
CALA Call subroutine indirect 2 1 0111 1111 1000 1100
CALL Call subroutine 2 2 1111 1000 0000 0000
0000 BBBB BBBB BBBB
RET Return from subroutine 2 1 0111 1111 1000 1101

CONTROL INSTRUCTIONS

Mnemonic and Description Cycles |Words 16-Bit Opcode
MSB LSB
DINT Disable interrupt 1 1 0111 1111 1000 0001
EINT Enable interrupt 1 1 0111 1111 1000 0010
LST Load status register from data memory 1 1 0111 1011 | bDD DDDD
NOP No operation 1 1 0111 1111 1000 0000
POP Pop top of stack to low accumulator 2 1 0111 1111 1001 1101
PUSH Push low accumulator onto stack 2 1 0111 1111 1001 1100
ROVM  Reset overflow mode 1 1 0111 1111 1000 1010
SOVM  Set overflow mode 1 1 0111 1111 1000 1011
SST Store status register 1 1 0111 1100 | DDD DDDD

1/0 AND DATA MEMORY OPERATIONS

Mnemonic and Description Cycles |Words 16-Bit Opcode
mMSsB LSB
DMOV  Data move in data memory 1 1 0110 1001 | DDD DDDD
IN Input data from port 2 1 0100 OAAA | DDD DDDD
ouT Output data to port 2 1 0100 1AAA | DDD DDDD
TBLR Table read 3 1 0110 0111 | DDD DDDD
TBLW  Table write 3 1 0111 1101 | DDD DDDD
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4.3 Individual Instruction Descriptions

Each instruction in the instruction set summary is described in the following
pages. Instructions are listed in alphabetical order. Information, such as as-
sembler syntax, operands, execution, encoding, description, words, cycles,
and examples, is provided for each instruction. An example instruction is
provided on the next two pages to familiarize the user with the special format
used and explain its content. Refer to Section 4.1 for further information on
memory addressing. CcJde examples using many of the instructions are given
in Section 5 on Software Applications.



EXAMPLE

Example Instruction EXAMPLE

Syntax

Direct:
Indirect:
Immediate:

Operands

Execution

Encoding

Direct:

Indirect:

Immediate:

[<label>] EXAMPLE <dma>[,<shift>]
[<label>] EXAMPLE {*|*+|*-}[,<shift>[,<next ARP>]]
[<label>] EX_AMPLE [<constant>]

Each instruction begins with an assembler syntax expression. The optional
comment field that concludes the syntax is not included in the syntax ex-
pression. Space(s) are required between each field (label, command, op-
erand, and comment fields) as shown in the syntax. The syntax example
illustrates both direct and indirect addressing, as well as immediate ad-
dressing in which the operand field includes <constant>.

0 <dma < 127
ARP =0 or1
0 < constant < 255

Operands may be constants or assembly-time expressions referring to me-
mory, I/O and register addresses, pointers, shift counts, and a variety of
constants. The operand values used in the example syntax are shown.

(PC) +1 = PC '
(ACC) + (dma) x 2shift - Acc

1 = interrupt mode (INTM) status bit
Affects INTM.

This section provides an example of the instruction operation sequence,
describing the processing that takes place when the instruction is executed.
Conditional effects of status register specified modes are also given. In ad-
dition, thosé bits in the status registers that are affected by the instruction
are listed.

15 14 13 12 11 170 89 8 7 6 65 4 3 2 1 0

l 0 0 0 0 I Shift l 0 l Data Memory Address _]
[0 0o o o] Shift [ 1] See Section 4.1 H
[1 0 o] 13-Bit Constant -

Opcode examples are shown of both direct and indirect addressing or of the
use of an immediate operand.



EXAMPLE Example Instruction EXAMPLE

Description  This section decribes the instruction execution and its effect on the rest of
the processor or memory contents. Any constraints on the operands im-
posed by the processor or the assembler are also described here. The de-
scription parallels and supplements the information given by the execution
block.

Words 1

The digit specifies the number of memory words required to store the in-
‘struction and its extension words.

Cycles 1

The digit specifies the number of cycles required to execute the instruction.

Example ADD DAT1,3 (DP = 0)
or
ADD *,3 If current auxiliary register contains 1.
Before Instruction After Instruction
Data - Data

Memory Memory

I

ACC 7 ACC >17

The sample code presented in the above format shows the effect of the
code on memory and/or registers.



ABS Absolute Value of Accumulator ABS
Syntax [<label>] ABS
Operands None
Execution (PC) +1 = PC
If (ACC) < 0:
Then -(ACC) = ACC
Encoding 1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Description

Words
Cycles

Example

[0 * 1 1 1 11 1 1 0 0 0 1 0 o0 0]

If the contents of the accumulator are greater than or equal to zero, the ac-
cumulator is unchanged by the execution of ABS. If the contents of the
accumulator are less than zero, the accumulator is replaced by its two's-
complement value.

Note that >80000000C is a special case. When the overflow mode is not set,
the ABS of >80000000 is >80000000. When in the overflow mode, the
ABS of >80000000 is >7FFFFFFF.

1
1

ABS

Before Instruction After Instruction

AcC >1234 ACC >1234
ACC >FFFFFFFF ACC



ADD

Add to Accumulator with Shift ADD

Syntax
Direct:
Indirect:

Operands

Execution

Encoding

[<label>] ADD <dma>[,<shift>]
[<label>] ADD {*|*+|*-}[.<shift>[,<next ARP>]]

0 < dma <€ 127
ARP =0or1

(PC) +1 = PC ,
(ACC) + (dma) x 2shift - AcC

15 14 13 12 11 10 9 8 7 6 65 4 3 2 1 0

Direc:t [ 00 0 0 0] Shift | o] Data Memory Address |

|ndirect:|0 0 0 O

Description

Words
Cycles

Example 1

Example 2

Shift [ 1] See Section 4.1 |

Contents of the addressed data memory location are left-shifted and added
to the accumulator. During shifting, low-order bits are zero-filled, and
high-order bits are sign-extended. The result is stored in the accumulator.

1

1
ADD DAT1,3 (DE = 0)
or
ADD *,3 If current auxiliary register contains 1.
Before Instruction After Instruction
Data Data
Memory Mamcry
ACC ACC >17
ADD  DAT2,4 (DP = 0)
or
ADD *,4 If current auxiliary register contains 2.
Before Instruction After Instruction
Data Data
Mergory >8BOE Mer;ory >8BOE
ACC ACC >FFF8BOEO



ADDH Add to High Accumulator ADDH
Syntax
Direct: [<label>] ADDH <dma>
Indirect: [<label>] ADDH {*|*+|*-}[,<next ARP>]
Operands 0 <dma < 127
ARP =0or1
Execution (PC) +1 - PC
(ACC) + (dma) x 216 = AccC
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct:[ 0 1 1 0 0 0 0 o o] Data Memory Address |
Indirect{ 011 _0 0 0 0 o0]1 | See Section 4.1 |

Description

Words
Cycles

Example

Contents of the addressed data memory location are added to the upper
half of.the accumulator (bits 31 through 16). Low-order bits are unaffected
by ADDH.

The ADDH instruction may be used in performing 32-bit arithmetic.

1
1

ADDH  DAT5 (DP = 0)

or

ADDH * If current auxiliary register contains 5.
Before Instruction After Instruction

Data Data
5 5
ACC >13 ACC >40013



Add to Accumulator

ADDS with Sign-Extension Suppressed ADDS
Syntax
Direct: [<label>] ADDS <dma>
Indirect: [<label>] ADDS {*|*+|*-}[,<next ARP>]
Operands 0 < dma < 127
ARP =0or1
Execution (PC) +1—PC
(ACC) + (dma) = ACC
(dma) is a 16-bit unsigned number.
Affects OV; affected by OVM.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Direc:t[0 1 1 0o o o o 1fo] Data Memory Address |
indirect[0 1 1 0o o o o 1]1 | See Section 4.1 |

Description

Words
Cycles

Example

Contents of the specified data memory location are added with sign-ex-
tension suppressed. The data is treated as a 16-bit unsigned number rather
than a two’s-complement number. Therefore, there is no sign-extension as
with the ADD instruction.

The ADDS instruction can be used in implementing 32-bit arithmetic.

1
1

ADDS DAT11 (DP = 0)
or
ADDS * If current auxiliary register contains 11.
Before Instruction After Instruction
Data Data
Meﬂory >F006 Me“n;ory >F006
ACC ACC >F009



AND AND with Low-Order- Bits of Accumulator AND

Syntax
Direct: [<label>] AND <dma>
Indirect: [<label>] AND {*|*+|*-}[,<next ARP>]

Operands 0 < dma < 127
ARP =0or1

Execution (PC) +1 = PC
(ACC(15-0)).AND.(dma) = ACC(15-0)
0~ ACC(31-16)

Encoding 15-14 13 12 11 100 9 8 7 6 5 4 3 2 1 0
Direct:[ 0 1 1 1 1 0 o0 1]o0 ] Data Memory Address |
Indirect:| 0 11 1 1 0 0 1]1 ] See Section 4.1 |

Description  The lower half of the accumulator is ANDed with the contents of the ad-
dressed data memory location. The upper half of the accumulator is ANDed
with all zeroes. Therefore, the upper half of the accumulator is always ze-
roed by the AND instruction.

Words 1
Cycles 1
Example AND DAT16 (DP = 0)
or
AND * If current auxiliary register contains 16.

Before Instruction After Instruction
Data Data
16 16
ACC >12345678 ACC >78



APAC

Add P Register to Accumulator APAC

Syntax
Operands

Execution

Encoding

Description

Words
Cycles

Example

[<label>] APAC
None

(PC) +1 = PC

(ACC) + (P register) = ACC

Affects QV; affected by OVM.

1 14 13 12 .11 10 9 8 7 6 5 4 3 2 1 0
[o 7 1+ 1+ 1 1 1 1 1 0o 0o o0 1 1 1 1]

The contents of the P register, the result of a muitiply, are added to the
contents of the accumulator. The result is stored in the accumulator.

The APAC instruction is a subset of the LTA and LTD instructions.

1
1

APAC

Before Instruction After Instruction

o
o

>40 >40

ACC >20 ACC >60



B Branch Unconditionally B
Syntax [<label>] B <pma>

Operands 0 < pma < 4095

Execution pma —* PC

Encoding 1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Description

Words
Cycles

Example

4-20

1 1 1 1 1 0O 0 1 o 0 O O O 0 O O

Program Memory Address

Control passes to the designated program memory address (pma). Pma can
be either a symbolic or a numeric address.

2
2

B PRG191 191 is loaded into the program counter,
and the program continues running from
that location.



BANZ Branch on Auxiliary Register Not Zero BANZ

Syntax [<label>] BANZ <pma>
Operands 0 < pma < 4095

Execution If (AR bits 8-0) # O:
Then pma —* PC;
Else (PC) + 2 —» PC
(AR) - 1 = AR.

Encoding 1 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 0 1 0 0 0 0 0 0 0 4] 0O O
Program Memory Address

Description  If the lower nine bits of the current auxiliary register are not equal to zero,
then the address contained in the following word is loaded into the pro-
gram counter. If these bits are equal to zero, the current program counter is
incremented by two. In either case, the auxiliary register is decremented.
Note that the test for zero is performed before decrementing the auxiliary
register. The branch to a location in program is specified by the program
memory address (pma). Pma can be either a symbolic or numeric address.

Words 2
Cycles 2
Example BANZ PRG35
Before Instruction After Instruction
AR AR
pc P
or
AR AR >FFFF
PC >46 PC >48
Note:

BANZ is designed for loop control using the auxiliary registers as loop
counters. The auxiliary register is decremented after testing for zero.
The auxiliary registers also behave as modulo 512 counters.
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BGEZ

Greater Than or Equal to Zero BGEZ

Syntax
Operands

Execution

Encoding

Description

Words
Cycles

Example

4-22

[<label>] BGEZ <pma>
0 < pma < 4095
If (ACC) 2 0:

Then pma —* PC;

Else (PC) + 2 = PC.

15 14 13 12-11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 1 0O 0 0 O O o0 o0 o

Program Memory Address

If the contents of the accumulator are greater than or equal to zero, then
branch to the specified program memory location. The branch to a location
in program is specified by the program memory address (pma). Pma can
be either a symbolic or numeric address.

2
2

BGEZ PRG217 217 is loaded into the program counter
if the accumulator is greater than or
equal to zero.



BGZ

Syntax
Operands

Execution

Encoding

Description

Words
Cycles

Example

Branch if Accumulator Greater Than Zero BGZ

[<label>] BGZ <pma>
0 < pma < 4095
If (ACC) > 0:

Then pma — PC;
Eise (PC) + 2 - PC.

15 14 13 12 11 10 9 8 7.6 5 4 3 2 1 0

1 1 1 1 1 1 o o o o O O O o0 o0 O

Program Memory Address

If the contents of the accumulator are greater than zero, then branch to the
specified program memory location. The branch to a location in program
is specified by the program memory address (pma). Pma can be either a
symbolic or numeric address.

2
2

BGZ PRG342 342 is loaded into the program counter
if the accumulator is greater than zero.
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BlOZ Branch on |/O Status Equal to Zero Bl10OZ

Syntax
Operands

Execution

Encoding

Description

Words
Cycles

Example

4-24

[<label>] BIOZ <pma>
0 < pma < 4095

If BIO = O:
Then pma = PC;
Eise (PC) + 2 = PC.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
i 1 1 1 0o 1 1 0 0 O 0O O O O O O

Program Memory Address

If the BIO pin is active low, then branch to the specified program memory
location. Otherwise, the program counter is incremented to the next in-
struction. The branch to a location in program is specified by the program
memory address (pma). Pma can be either a symbolic or numeric address.

The BIOZ instruction in conjunction with the BIO pin can be used to test if
a peripheral is ready to send or receive data. Polling the BIO pin using BIOZ
may be preferable to an interrupt w.hen executing time-critical loops.

2
2

BIOZ PRG64 =~ If the BIO- pin is active (low), then
a branch to location 64 occurs. Otherwise,
the program counter is incremented.



Less Than or Equal to Zero BLEZ

[<label>] BLEZ <pma>

Else (PC) +2 — PC.

BLEZ

Syntax

Operands 0 < pma < 4095

Execution If (ACC) < 0:
Then pma —* PC;

Encoding

Description

Words
Cycles

Example

15 14 13 12 11 10 9 8 7 6 65 4 3 2 1 O

1 1 1 1 1 0o 1 1 o 0 0 O O O 0 O

Program Memory Address

If the contents of the accumulator are less than or equal to zero, then
branch to the specified program memory location. The branch to a location
in program is specified by the program memory address (pma). Pma can
be either a symbolic or numeric address.

2

2

BLEZ PRG63 63 is loaded into the program counter if
the accumulator is less than or equal to
zero.



BLZ

Syntax
Operands

Execution

Encoding

Description

Words
Cycles

Example
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Branch if Accumulator Less Than Zero BLZ

[<label>] BLZ <pma>
0 < pma < 4095 '
If (ACC) < 0:

Then pma - PC;

Else (PC) + 2 - PC.

1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0o 1 O 0 0 O O 0 o0 o0 o

Program Memory Address

If the contents of the accumulator are less than zero, then branch to the

specified program memory location. The branch to a location in program
is specified by the program memory address (pma). Pma can be either a
symbolic or numeric address.

2
2

BLZ PRG481 481 is loaded into the program counter if
the accumulator is less than zero.



Branch if Accumulator Not Equal to Zero BNZ

BNZ
Syntax [<label>] BNZ <pma>
Operands 0 < pma < 4095
Execution If (ACC) # O:

Then pma — PC;

Else (PC) + 2 — PC.
Encoding

Description

Words
Cycles

Example

1% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
1 1 1 1 1 1 1 o o 0O O O o O o O
Program Memory Address

If the contents of the accumulator are not equal to zero, then branch to the
specified program memory location. The branch to a location in program
is specified by the program memory address (pma). Pma can be either a
symbolic or numeric address.

2
2

BNZ PRG320 320 is loaded into the program counter
if the accumulator does not equal zero.
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BV

Branch on Overflow BV

Syntax
Operands

Execution

Encoding

Description

Words
Cycles

Example

4-28

[<label>] BV <pma>
0 < pma < 4095

If overflow (OV) status bit = 1:
Then pma »* PCand 0 = OV;
Eilse (PC) + 2 = PC.

Affects OV; affected by OV.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0o 1 0 1 0O 0 O O O o0 o0 o

Program Memory Address

If the overflow (OV) flag has been set, then a branch to the specified pro-
gram memory location occurs and the overflow flag is cleared. Otherwise,
the program counter is incremented to the next instruction. The branch to
a location in_program is specified by the program memory address (pma).
Pma can be either a symbolic or numeric address.

2
2

BV PRG610 If an overflow has occurred since the
overflow flag was last cleared, then 610
is loaded into the program counter and
OV is cleared. Otherwise, the program
counter is incremented.



BZ Branch if Accumulator Equals Zero BZ
Syntax [<label>] BZ <pma>
Operands 0 < pma < 4095
Execution If (ACC) =0:
Then pma —* PC;
Else (PC) + 2~ PC.
Encoding 15 14 13 12 11 10 9 8 7 6 65 4 3 2 1 O
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 O
Program Memory Address
Description If the contents of the accumulator are equal to zero, then branch to the
specified program memory location. The branch to a location in program
is specified by the program memory address (pma). Pma can be either a
symbolic or numeric address.
Words 2
Cycles 2
Example BZ PRG102 102 is loaded into the program counter

if the accumulator is equal to zero.
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CALA

Call Subroutine Indirect CALA

Syntax
Operands

Execution

Encoding

Description

Words
Cycles

Example

4-30

[<label>] CALA
None

(PC) +1 = TOS
(ACC(11-0)) = PC

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Lo11111111ooo11oﬂ

The current program counter is incremented and pushed onto the top of the
stack. Then, the contents of the 12 least significant bits of the accumulator
are loaded into the PC.

The CALA instruction is used to perform computed subroutine calls.

1
2

CALA

Before Instruction After Instruction

PC >25 PC >83
ACC >83 ACC >83
Stack >32 Stack >26

>75 >32
>84 >75
>49 >84




CALL

Call Subroutine CALL

Syntax
Operands

Execution

Encoding

Description

Words
Cycles

Example

[<label>] CALL <pma>
0 < pma < 4095

(PC) + 2 > TOS
pma —* PC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

1 1 1 1 1 ¢ 6 o0 ¢ €0 o0 0 0 0O 0 O

Program Memory Address

The current program counter is incremented by two and pushed onto the
top of the stack. The specified program memory address (pma) is then
loaded into the PC. Pma can be either a symbolic or a numeric address.

2
2

CALL PRG109

Before Instruction After Instruction
PC >33 - PC >6D
Stack >71 Stack >35
>48 >71
>16 >48
>80 >16
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DINT

Syntax
Operands

Execution

Encoding

Description

Words
Cycles

Example

4-32

Disable Interrupt DINT

[<label>] DINT
None

(PC) +1 = PC
1 — interrupt mode (INTM) status bit
Affects INTM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1 1 1 1 1 1 1 1 0 0 0 0 0 o 1]

The interrupt mode (INTM) status bit is set to logic 1. Maskable interrupts
are disabled immediately after the DINT instruction executes. Note that the
LST instruction does not affect INTM.

The unmaskable interrupt, RS, is not disabled by this instruction. Interrupts
are also disabled by a reset.

1
1

DINT Maskable'interrupts are disabled, and INTM
is set to one.



DMOV

Data Move in Data Memory

DMOV

Syntax

Direct: [<label>] DMOV <dma>
Indirect: [<label>] DMOV {*|*+|*-}[,<next ARP>]

Operands

Execution

Encoding

0 < dma < 127
ARP =0or1

(PC) +1 > PC
(dma) = dma + 1

15 14 13 12 11

0 9 8 7 6 5 4 3 2 1

0

Directt|0 1 1 0o 1 0 ©

1 I 0 | Data Memory Address

|

indirectf 0 1 1 0 1 0 o0

Description

Words
Cycles

Example

1] |

See Section 4.1

i

The contents of the specified data memory address are copied into the
contents of the next higher address. When data is copied from the ad-
dressed location to the next higher location, the contents of the addressed

location remain unaltered.

The data move function is useful in implementing the z-1 delay encountered
in digital signal processing. The DMOV function is included in the LTD in-
struction (see LTD for more information).

1

1

DMOV DATS8
or

DMOV *

Before Instruction

Data
Memory >43
8
Data
Mergofv

After Instruction

Data
Memory >43
8
Data
Mergory >43

If current auxiliary register contains 8.
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EINT

Enable Interrupt EINT

Syntax
Operands

Execution

Encoding

Description

Words
Cycles

Example

4-34

[<label>] EINT
None

(PC) +1 = PC
0 — interrupt mode (INTM) status bit
Affects INTM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
u11111111ooooo1o|

The interrupt mode (INTM) status bit is cleared to logic 0. Maskable in-
terrupts are enabled after the instruction following EINT executes. This al-
lows an interrupt service routine to re-enable interrupts and execute a RET
instruction before any other pending interrupts are processed. Note that the
EINT instruction should not be used immediately preceding a branch in-
struction.

The LST instruction does not affect INTM. (See the DINT instruction for
further information.)

1
1

EINT Maskable interrupts are enabled, and INTM
is set to zero.



Input Data from Port

IN

Syntax

Direct: [<label>] IN <dma>,<PA>
Indirect: [<label>] IN {*|*+|*-},<PA>[, <next ARP>]

Operands

Execution

Encoding

0 < dma < 127
ARP =0or1
0 < port address PA < 7

(PC) +1 > PC

Port address — address lines A2/PA2-A0/PAQ
0 - address bus A11-A4

Data bus D15-D0 = dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Direct: [0 10 0 0] Port Address | 0 | Data Memory Address

1

Indirect: [ 0 100 0] Port Address | 1 | See Section 4.1

‘Description

Words
Cycles

Example

|

The IN instruction reads data from a peripheral and places it in data mem-
ory. This is a two-cycle instruction. During the first cycle, the port address
is sent to address lines A2/PA2-A0/PA0. DEN goes low during the same
cycle, strobing in the data that the addressed peripheral places on the data
bus D15-D0. On the TMS32010/C10/C15, MEN remains high when DEN

is active. On the TMS320C17, the MEN signal is not available.

1
2

IN STAT,PAS5 Read in word from peripheral on port

address 5. Store in data memory
location STAT.

‘or

LARK 1,20 Load ARl with decimal 20.
LARP 1 Load ARP with decimal 1.

IN *-,PAl1,0 Read in word from peripheral on port

address 1. Store in data memory
location 20. Decrement ARl to 19.
Load the ARP with O.
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LAC Load Accumulator with Shift LAC

Syntax
Direct: [<label>] LAC <dma>[,<shift>]
Indirect: [<label>] LAC {*I*+1*-}[, <shift>[,<next ARP>]]

Operands 0 < dma < 127

ARP =0 or1
0 < shift < 15 (defaults to 0)
Execution (PC) +1 > PC
(dma) x 2shift - Acc
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o
Direct: | 0 0 1 o] Shift. [ o] Data Memory Address |
Indirect:| 0 0 1 | Shift [ 1] See Section 4.1 |

Description  Contents of the specified data memory address are left-shifted and loaded
into the accumulator. During shifting, low-order bits are zero-filled.
High-order bits are sign-extended.

Words 1
Cycles 1
Example LAC DAT6,4 (DP = 0)
or
LAC *,4 If current auxiliary register contains 6.
Before Instruction After Instruction
Data Data
6 6
AcC AcC >10
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LACK

Load Accumulator Immediate

Syntax
Operands

Execution

Encoding

Description

Words
Cycles

Example

LACK

[<label>] LACK <constant>
0 < constant < 2565

(PC) +1 = PC
8-bit positive constant > ACC

15 14 13 12 11 10 9 8 7 6 5

4 3 2 1 0

[0 1 1 1 1 1 1 of 8-Bit Constant |

The 8-bit constant is loaded into the accumulator right-justified. The upper
24 bits of the accumulator are zeroed (i.e., sign extension is suppressed).

1
1

LACK >15

Before Instruction

ACC >31 ACC

After Instruction

>15
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LAR Load Auxiliary Register LAR
Syntax
Direct: [<label>] LAR <AR>,<dma> .
Indirect: [<label>] LAR <AR>,{*|*+|*-}[,<next ARP>]
Operands 0 < dma < 127
auxiliary register AR = 0 or 1
ARP =0 or1
Execution (PC) +1 = PC
(dma) - auxiliary register AR
Encoding 1514131211109876543210
Direct: LO o 1 1 1 0 0 IAR I 0 I Data Memory Address 1
Indirect |0 0 11 1 0 o|ar [ 1] See Section 4.1 ]
Description  The contents of the specified data memory address are loaded into the de-
signated auxiliary register. The LAR and SAR (store auxiliary register) in-
structions can be used to load and store the auxiliary registers during
subroutine calls and interrupts. If an auxiliary register is not being used for
indirect addressing, LAR and SAR enable the register to be used as an ad-
ditional storage register, _especially for swapping values between data
memory locations without affecting the contents of the accumulator.
ARO is not decremented after the LAR instruction. If indirect addressing
with autodecrement is used with LAR to load the current auxiliary register,
the new value of the auxiliary register is not decremented as a result of in-
struction execution. The analagous case is true with autoincrement.
Words 1
Cycles 1
Example LAR ARO,DAT19

4-38

Before Instruction After Instruction
MData s MData
19 19 v
ARO a0 [ >is]
also,
LARP 0
LAR  ARO,*-
Data ‘ Data
Memory Memory >32
ARO ARO >32



LARK

Load Auxiliary Register Immediate LARK

Syntax
Operands

Execution

Encoding

Description

Words
Cycles

Example

[<label>] LARK <AR>,<constant>

0 < constant < 265
auxiliary register AR = 0 or 1

(PC) +1 —* PC
8-bit constant —* auxiliary register AR

19514 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[o 7 1+ 1 o o ofar] 8-Bit Constant |

The 8-bit positive constant is loaded into the designated auxiliary register
right-justified and zero-filled (i.e., sign-extension suppressed).

LARK is useful for loading an initial loop counter value into an auxiliary
register for use.with the BANZ instruction.

1
1

LARK ARO,>21

Before Instruction After Instruction

ARO ARO >21
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LARP

Syntax
Operands

Execution

Encoding

N

Description

Words
Cycles

Example

4-40

Load Auxiliary Register Pointer LARP

[<label>] LARP ~<constant>
0 < constant < 1

(PC) +1 = PC
Constant = ARP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
L011010001000000|ARP]

The auxiliary register pointer is loaded with the one-bit constant identifying
the desired auxiliary register. ARP can also be modified by the LST and
MAR instructions, as well as any instruction that is used in the indirect ad-
dressing mode.

The LARP instruction is a subset of MAR; i.e., the opcode is the same as
MAR in the indirect addressing mode. The instruction MAR * ,<next ARP>
has the same effect as LARP.

1

1

LARP 1 Any succeeding instructions will use
auxiliary register ARl for indirect
addressing.



LDP Load Data Memory Page Pointer LDP
Syntax
Direct: [<label>] LDP <dma>
Indirect: [<label>] LDP {*|*+|*-}[,<next ARP>]
Operands 0 < dma < 127
ARP =0or1
Execution (PC) +1 > PC
LSB of (dma) — data memory page pointer (DP =00r1)
Affects DP.
Encoding 1514131211109876543210
pirect[o 1 1 o0 1 1 1 1]o | Data Memory Address |
indirect[ 0 1 _1_o0 1 1 1 11| See Section 4.1 |

Description

Words
Cycles

Example

The least significant bit of the contents of the specified data memory ad-
dress is loaded into the DP (data memory page pointer) register. All high-
er-order bits are ignored in the data word. DP = 0 defines page O that
contains words 0-127. DP = 1 defines page 1 that contains words
128-143/255. The DP may also be loaded by the LST and LDPK in-

structions.

1

1

LDP DAT1 LSB of location DAT1 is loaded into DP.
ggP *,1 LSB of location currently addressed by

auxiliary register is loaded into DP.
ARP is set to 1.

Before Instruction After Instruction

Data Data
Mer1nory l >FEDC l Mer1nory >FEDC

Vv
o

DP 1 DP
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LDPK Load Data Memory Page Pointer Immediate LDPK

Syntax
Operands

Execution

Encoding

Description

Words
Cycles

Example

4-42

[<label>] LDPK <constant>
0 s constant < 1
(PC) +1 - PC

Constant = data memory page pointer (DP)
Affects DP.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o11o111oooooooo|DP|

The DP (data memory page pointer) register is loaded with a 1-bit constant.
DP = 0 defines page O that contains words 0-127. DP = 1 defines page 1
that contains words 128-143/255. The DP may also be loaded by the LST
and LDP instructions.

1
1

LDPK 0 The data page pointer is set to O.



LST

Load Status Register from Data Memory LST

Syntax

Direct: [<label>] LST <dma>
indirect: [<label>] LST {*|*+|*-}[,<next ARP>]

Operands 0 < dma < 127
ARP =0or1
Execution (PC) +1 — PC
(dma) — status register bits
Affects ARP, OV, OVM, and DP.
Does not affect INTM.
Encoding 1 14 13 12 11 10 9 8 7 6 5 4 3 2 1 ©
pirect:t[o 1 1 1 1 o 1 1]o | Data Memory Address |
indirect[ 0 111 1 0 1 1[1 | See Section 4.1 |
Description  The status register is loaded with the addressed data memory value. Note
that the INTM (interrupt mode) bit is unaffected by LST.
The LST instruction is used to load the status register after interrupts and
subroutine calls. The status register contains the status bits: OV (overflow
fiag) bit, OVM (overflow mode) bit, ARP (auxiliary register pointer), and
DP (data memory page pointer). These bits were stored (by the SST in-
struction) in the data memory word as follows:
15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
[ov[ovm[iNtm] 1 1 1 1 JaRpj1 1 1 1 1 1 o |or |
Words 1
Cycles .
Example LARP 0
LST *,1 The data memory word addressed by the
contents of auxiliary register ARO
replaces the status bits. ARP becomes 1.
Note:

. When using direct addressing, the SST instruction always saves status
on page 1. The LST instruction will not automatically restore status
from page 1. Therefore, the user must specify the correct data page
pointer.
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LT

Load T Register LT

Syntax

Direct: [<label>] LT <dma>
Indirect: [<label>] LT {*|*+|*-}[,<next ARP>]

Operands 0 s dma < 127
ARP =0or1
Execution (PC) +1 = PC
(dma) = T register
Encoding 15 14 13 12 11 710 9 8 7 6 5 4 3 2 1 0
Direct [0 1 1 0 1 0 1 oo ] Data Memory Address |
Indirect| 0 11 0 1 0o 1 o1 ] See Section 4.1 |

Description

Words
Cycles

Example

4-44

The T register is loaded with the contents of the specified data memory lo-
cation. The LT instruction may be used to load the T register in preparation
for multiplication (see the LTA, LTD, MPY, and MPYK instructions).

1
1

LT DAT24 (DP = 0)
or

LT * If current auxiliary register contains 24.
Before Instruction After Instruction
Data Data
24 24

>62

-—f
I
-

3



LTA Load T Register and Accumulate Previous Product LTA

Syntax
Direct: [<label>] LTA <dma>
Indirect: [<label>] LTA {*|*+|"-}[,<next ARP>]

Operands 0 < dma < 127
ARP =0or1

Execution (PC) +1 = PC
(dma) — T register
(ACC) + (P register) ~ ACC
Affects OV; affected by OVM.

Encoding 15 14 13 12 11 10 9 8 7 6 65 4 3 2 1 0
Direct:[0 1 1 o0 1 1 o ofo | Data Memory Address |
Indirect|[0 1 _1_o0 1 1 o of1 | See Section 4.1 |

Description The T register is loaded with the contents of the specified data memory
address. The P register, containing the previous product of the multiply
operation, is added to the accumulator, and the result is stored in the ac-
cumulator.

The function of the LTA instruction is included in the LTD instruction.

Words 1
Cycles 1
Example LTA  DAT24 (DP = 0)
or
LTA * 1f current auxiliary register contains 24.
Before Instruction After Instruction
Data Data
Memory S62 ] Mepory
24 24

>3 >62

P >F P >F

-
—

ACC >5 ACC >14
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Load T Register, Accumulate
LTD Previous Product, and Move Data LTD

Syntax
Direct: [<label>] LTD <dma>
Indirect: [<label>] LTD {*|*+|*-}[,<next ARP>]

Operands 0 < dma < 127
ARP =0or1

Execution (PC) +1 = PC
(dma) = T register
(dma) = dma + 1
(ACC) + (P register) = ACC
Affects OV; affected by NVM.

Encoding 15 14 13 12 11 10 9 8 7 6 5 | 4 3 2 1 0
Direct]0 1 1 0o 1 o0 1 1]o0 ] Data Memory Address |
Indirect:{ 0 1 1 0 1 _o0 1 1]1 | See Section 4.1 B

Description The T register is loaded with the contents of the specified data memory
address. The contents of the P register are added to the accumulator, and
the result is placed in the accumulator. The contents of the specified data
memory address are also copied to the next higher data memory address.
This function is described under the instruction DMOV.

Words 1
Cycles 1
Example LTD DAT24 (DP = Q)
or
* LTD * If current auxiliary register contains 24.
Before Instruction After Instruction
MData o2 MData
emory > emory
24 24
Data Data
Memory > Memory
25 25

>

62

P > P >

ACC ACC >14

-y
v
—
v v v
(223 (=2}
m N N
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MAR Modify Auxiliary Register MAR

Syntax
Direct: [<label>] MAR <dma>
Indirect: [<label>] MAR {*{*+|*-}[,<next ARP>]

Operands 0 < dma < 127
ARP =0 or1

Execution (PC) +1 = PC
Modifies AR(ARP), ARP as specified by the indirect addressing field
(acts as a NOP in direct addressing).

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Direct: I o 1 1 0 1 0 0 0 | 0 I Data Memory Address |
Indirect[o 1 1 o 1 o o of1 ] See Section 4.1 |

Description In the indirect addressing mode, the auxiliary registers are either incre-
mented or decremented and the ARP is modified; however, no use is made
of the memory being referenced. MAR is used only to modify the auxiliary
registers or the ARP. ARP may also be loaded by an LST instruction.

MAR acts as a no-operation (NOP) instruction in the direct addressing
mode. Also, the LARP instruction is a subset of MAR (i.e., MAR *,0 per-
forms the same function as LARP 0).

Words 1
Cycles 1
Example 1 MAR *,1 Load the ARP with 1.
Before Instruction After Instruction
Example 2 MAR *- Decrement current auxiliary register (in this
case, AR1)
Before Instruction After Instruction
AR1 >35 AR1 >34
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MAR Modify Auxiliary Register MAR

Example 3 MAR *+,0 Increment current auxiliary register (AR1) and
load ARP with O. :

Before Instruction After Instruction

AR1 >34 AR1

ARP

I

U ;
w
(4]

ARP
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MPY Multiply MPY
Syntax }
Direct: [<label>] MPY <dma>
Indirect: [<label>] MPY {*|"+|"-}[,<next ARP>]
Operands 0 < dma < 127
ARP =0or1
Execution (PC) +1 = PC
(T register) x (dma) — P register
Encoding i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Direc:t[0 1 1 _0 1 1 0 1]0 | Data Memory Address |
indirect| 0 _1_1_0 1 _1_ 0 1]1 | See Section 4.1 B
Description The contents of the T register are multiplied by the contents of the ad-
dressed data memory location. The result is placed in the P register.
During an interrupt, all registers except the P register can be saved and re-
stored directly. However, the first-generation TMS320 devices have hard-
ware protection against servicing an interrupt between an MPY or MPYK
instruction and the following instruction. For this reason, it is advisable to
follow MPY and MPYK with LTA, LTD, PAC, APAC, or SPAC.
Note that no provisions are made for the condition of >8000 x >8000. If
this condition arises, the product will be >C0000000.
Words 1
Cycles 1
Example MPY DAT13 (DP = 0)

or
MPY * If current auxiliary register contains 13.
Before Instruction After Instruction
Data Data
Memory >7 Memory >7
13 13

>6 >6

—
—

P >36 P >2A
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MPYK

Multiply Immediate MPYK

Syntax
Operands

Execution

Encoding

Description

Words
Cycles

Example

4-50

[<label>] MPYK <constant>
-212 < constant < 212

(PC) +1 = PC
(T register) x constant = P register

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 0 o] 13-Bit Constant ]

The contents of the T register are multiplied by the signed 13-bit constant.
The result is loaded into the P register.

During an interrupt, all registers except the P register can be saved and re-
stored directly. Since no’provision is made to save the contents of the P
register during an interrupt, the MPYK instruction should be followed by
one of the following instructions: PAC, APAC, SPAC, LTA, or LTD. Pro-
vision is made in hardware to inhibit interrupt during MPYK until the next
instruction is executed.

1
1

MPYK -9

Before Instruction After Instruction

7

-
I
~
—
I I

P >2A P >FFFFFFC1



NOP

No Operation NOP

Syntax
Operands

Execution

Encoding

Description

Words
Cycles

Example

[<label>] NOP
None
(PC) +1 = PC

%5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 7 1 1 1 1 1 1 1 0o 0o o o o 0 o0

No operation is performed. NOP affects only the PC.

NOP is useful as a pad or temporary instruction during program develop-
ment. )

1
1

NOP



Description

Words
Cycles

Example

4-52

"OR OR with Accumulator OR
‘Syntax
Direct: [<label>] OR <dma>
" Indirect: [<label>] OR {*|*+|*-}[,<next ARP>]
Operands 0 s dma < 127
ARP =0or1
Execution (PC) +1 - PC
(ACC(15-0)) .OR.dma —* ACC(15-0)
(ACC(31-16)) = ACC(31-16)
'Encoding %5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct:|0 1 1 1 1 0.1 o0]o | Data Memory Address |
Indirect:{ 0 11 1 1 0 1 o1 | See Section 4.1 |

The low-order bits of the accumulator are ORed with the contents of the
addressed data memory location. The high-order bits of the accumulator
are ORed with all zeroes. Therefore, the upper half of the accumulator is
unaffected by this instruction. The result is stored in the accumulator.

The OR instruction is useful for comparing selected bits of a data word.

1
1

OR DAT88 (DP = 0)

or
OR * Where current auxiliary register contains 88.
Before Instruction After Instruction
Data Data
Memory >F000 Memory >F000
88 88
ACC >100002 ACC >10F002



ouT Qutput Data to Port ouT
Syntax )
Direct: [<label>] OUT <dma>,<PA>
Indirect: [<label>] OUT {*|*+|*-},<PA>[,<next ARP>]
Operands 0 < dma < 127
ARP =0or1
0 < port address PA < 7
Execution (PC) +1—>PC
: Port address PA —* address bus A2/PA2-A0/PAO
0 — address bus A11-A3
(dma) —* data bus D15-D0
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct:| 0 1 0 0 1] PortAddress | 0| Data Memory Address |
Indirect:] 0 1 0 0 1 [ PortAddress | 1| See Section 4.1 1

Description

Words
Cycles

Example

The OUT instruction transfers data from data memory to an external pe-
ripheral. The first cycle of this instruction places the port address onto ad-
dress lines A2/PA2-A0/PAQ. During the same cycle, WE goes low and the
data word is placed on the data bus D15-D0. On the TMS32010/C10/C15,
MEN remains high during the first cycle. On the TMS 320C17 , the MEN
signal is not available.

1
2

ouT 120,7 Output data word stored in data memory
location 120 to peripheral on port
address 7.

ouT *,5 Output data word referenced by current
auxiliary register to peripheral on port
address 5.
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PAC Load Accumulator with P Register PAC
Syntax [<label>] PAC
Operands None
Execution (PC) +1 = PC
(P register) = ACC
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Description

Words
Cycles

Example

4-54

[0 1 1 1 1 1 111 0o 0 0 1 1 1 0]

The contents of the P register resulting from a multiply are loaded into the
accumulator.

1
1-

PAC

Before Instruction After Instruction

P T >144 P >144

ACC >23 ACC >144



POP

Pop Top of Stack to Low Accumulator POP

Syntax
Operands

Execution

Encoding

Description

Words
Cycles

Example

[<label>] POP
None

(PC) +1 = PC
(TOS) — ACC(11-0)
0 = ACC(31-12)
Pop stack one level.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
[ 1+ 1 1 1 1 1 1 1 o o 1 1t 1t 0 1]

The contents of the top of the stack (TOS) are copied to the low accu-
mulator, and the stack popped after the contents are copied. The next ele-
ment on the stack becomes the top of the stack. The upper bits (31-12)
of the accumulator are zeroed. The hardware stack is a last-in, first-out
stack with four locations. Any time a pop occurs, every stack value is co-
pied to the next higher stack location, and the top value is removed from
the stack. After a pop, the bottom two stack words will have the same
value. Because each stack value is copied, if more than three pops (due to
POP or RET instructions) occur before any pushes occur, all levels of the
stack contain the same value.

1
2

POP

Before Instruction After Instruction

ACC >82 ACC >45
Stack >45 Stack >16
>16 >7

>7 >33

>33 >33
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PUSH

Push Low Accumulator onto Stack PUSH

Syntax
Operands

Execution

Encoding

Description

Words
Cycles

Example

4-56

[<label>] PUSH
None

(PC) +1 = PC

Push all stack locations down one level.

(ACC(11-0)) »* TOS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1 1 1 1 1 1 1 1 0o 0o 1 1 1 0 0]

The contents of the lower 12 bits (11-0) of the accumulator are copied
onto the top of the hardware stack. The stack is pushed down before the
accumulator value is copied. The hardware stack is a last-in, first-out stack
with four locations. If more than four pushes (due to CALA, CALL, PUSH,
TBLR, of TBLW instructions or interrupts) occur before a pop, the first data
values written will be lost with each succeeding push.

1
2

PUSH

Before Instruction After Instruction

AcC ACC

Stack >2 Stack >7
>5 >2
>3 >5
>0 >3




RET

Return from Subroutine RET

Syntax
Operands

Execuiion

Encoding
Description

Words
Cycles

Example

[<label>] RET
None

(TOS) —»* PC
Pop stack one level.

1 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[011111111,0001103

The contents of the top of stack are copied into the program counter. The
stack is then popped one levei. RET is used in conjunction with CALA and
CALL for subroutines and interrupts.

1
2

RET

Before Instruction After Instruction

PC >96 PC >37
Stack >37 Stack >45
>45 >75

>75 >75

>75 >75
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ROVM

Reset Overflow Mode ROVM

Syntax
Operands

Execution

Encoding

Description

Words
Cycles

Example
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[<label>] ROVM
None
(PC) +1 = PC

0 = OVM status bit
Affects OVM.

16 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

-[o11111111ooo1o1o]

The OVM status bit is reset to logic zero. This disables the overflow mode,
in which the device was placed by the SOVM instruction. If an overflow
occurs with OVM reset, the OV (overflow flag) is set, and the overflowed
result is placed in the accumulator. OVM may also be loaded by the LST
and SOVM instructions (see the SOVM instruction).

1
1

ROVM The overflow mode bit OVM is reset,
disabling the overflow mode on any
subsequent arithmetic operations.



SACH Store High Accumulator with Shift SACH
Syntax
Direct: [<label>] SACH <dma>[,<shift>]
Indirect: [<label>] SACH {*|"+|*-}[,<shift>[,<next ARP>]]
Operands 0 < dma < 127
ARP =0Qor1
shift = 0,1, 0r 4
Execution (PC) +1 2 PC .
16 MSBs of (ACC) x 2shift » dma
Encoding 15 14 13 12 11 10 9 8 7 6 65 4 3 2 1 O
Direct:[0 1 o 1 1] shit | of  DataMemory Address |
indirectt[ 0 1 0o 1 1] shit | 1] See Section 4.1 |

Description

The SACH instruction copies the entire accumulator into a shifter. It then

left-shifts this entire 32-bit number 0, 1, or 4 bits, and copies the upper 16
bits of the shifted value into data memory. The accumulator itself remains

unaffected.
Words 1
Cycles 1
Example SACH DAT70,1 (DP = 0)
or
SACH *,1 If current auxiliary register contains 70.
Before Instruction After Instruction
ACC >4208001 ACC l >4208001 |
MData - o MData e
amcry amry
70 70
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SACL

Store Low Accumulator SACL

Syntax

Direct: [<label>] SACL <dma>
Indirect: [<label>] SACL {*|*+|*-}[,<O>[,<next ARP>]]

Operands 0 <dma < 127
ARP =0or1
shift = 0
Execution (PC) +1 = PC
(ACC(15-0)) * dma
Encoding 5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct:{| 0 1 0 1 0 0 0 oo | Data Memory Address | .
Indirec:| 0 1 0 1 0 0 0 o071 | See Section 4.1 |

Description

Words
Cycles

Example
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The low-order bits of the accumulator are stored in data memory. There is
no shift associated with this instruction, although a shift code of zero
MUST be specified if the ARP is to be changed.

1
1

SACL DAT71 (DP = 0)
or
SACL * If current auxiliary register contains 71.
Before Instruction » After Instruction
Data Data

Memo >5 Memo >8421
71 v 71 i
ACC >7C638421 ACC >7C638421



SAR Store Auxiliary Register SAR

Syntax
Direct: [<label>] SAR <AR>,<dma>
Indirect: [<label>] SAR <AR>{*|"+|"-}[,<next ARP>]

Operands 0 < dma < 127
auxiliary register AR = O or 1

ARP =0or1 »
Execution (PC) +1 > PC
(auxiliary register AR) —* dma
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Diec:t[0 0 1 1 0 o0 oJAR| O] Data Memory Address |
indirect:tf0 0 1 1 o o ofAR| 1] See Section 4.1 |

Description  The contents of the designated auxiliary register are stored in the addressed

data memory location. For more information, see the LAR instruction.

Words 1
Cycles 1
Example 1 SAR ARO,DAT30 (DP = 0)
or
SAR ARO,* If current auxiliary register contains 30.
Before Instruction After Instruction
Data Data
Memory >18 Memory
30 30
Example 2 LARP ARO
SAR ARO, *+
ARO ARO
Data Data
Memory Memory
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SAR

Store Auxiliary Register SAR
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Warning:

Special problems arise when SAR is used to store the current
auxiliary register with indirect addressing if auto-
increment/decrement is used.

LARP ARO
LARK ARO, 10
SAR ARO,*+ or SAR ARO, *~-

In this case, SAR ARO,”+ will cause the value 11 to be stored
in location 10. SAR ARO - will cause the value 9 to be stored
in location 10.




SOVM

Set Overflow Mode SOVM

Syntax
Operands

Execution

Encoding

Description

Words
Cycles

Example

[<label>] SOVM
None

(PC) +1 — PC
1 - overflow mode (OVM) status bit
Affects OVM.

15 14 13 12 11 10 9 8 7 6 6 4 3 2 1 0
[0 7+ 1 1 1 1 1 1 1 0o o o 1 o 1 1]

The OVM status bit is set to logic 1, which enabies the overfiow (satu-
ration) mode. If an overflow occurs with OVM set, the overflow flag OV is
set, and the accumulator is set to the largest representable 32-bit positive
(>7FFFFFFF) or negative (>80000000) number according to the direction
of overflow. OVM may also be loaded by the LST and ROVM instructions.
(See the ROVM instruction for further information.)

1
1

SOVM The overflow mode bit OVM is set, enabling
the overflow mode on any subsequent
arithmetic operations.
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SPAC Subtract P Register from Accumulator SPAC

Syntax
Operands

Execution

Encoding

Description

Words
Cycles

Example
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[<label>] SPAC
None '

(PC) +1 - PC
(ACC) - (P register) = ACC
Affects OV; affected by OVM.
1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1 1 1 11 1 1 1 0 0 1 0 0 o0 0]

The contents of the P register are subtracted from the contents of the ac-
cumulator. The result is stored in the accumulator. Note that the P register
is always sign-extended.

1
1

SPAC

Before Instruction - After Instruction

P >24 P 24

|||

ACC >3C ACC >18



SST

Store Status Register ‘ SST

Syntax
Direct:
Indirect:

Operands

Execution

Encoding
Direct:
Indirect:

Description

Words
Cycles

Example

[<label>] SST <dma>
[<label>] SST {*|*+|*-}[,<next ARP>]

0 < dma < 15 (TMS32010/C10)
0 < dma < 127 (TMS320C15/C17)
ARP =0or1

(PC) +1 — PC
(status register) — specified dma (page 1 only in direct addressing)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1 1+ 1 1 1 o ofo] Data Memory Address |

[0 1 1+ 1 1 1 o of1] See Section 4.1 |

The status bits are saved into the specified data memory address (page 1
only if direct memory addressing is used).

In the direct addressing mode, the status register is always stored in page
1 regardless of the value of the DP register. The processor automatically
forces the page to be 1, and the specific location within that page is defined
in the instruction. Note that the DP register is not physically modified. This
allows storage of the DP register in the data memory on interrupts, etc., in
the direct addressing mode without having to change the DP. In the indi-
rect addressing mode, the data memory address is obtained from the auxil-
iary register selected. (See the LST instruction for more information.)

The SST instruction can be used to store the status bits after interrupts and
subroutine calls. These status bits include the OV (overflow flag) bit, OVM
(overflow mode) bit, INTM (interrupt mode) bit, ARP (auxiliary register
pointer) bit, and DP (data memory page pointer) bit. The status bits are
stored in the data memory word as follows:

1% 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
[ov[ovm[iINTM] 1 1 11 JARP[1 1 1 1 1 1 X |OP]

X = reserved
1
1
SST DAT1 (DP = don't care)
or
SST *,1 If current auxiliary register contains 1.
Before Instruction After Instruction
Status Status
Register >5EFE Register >5EFE
Data Data
Memory Memory >5EFE
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SUB Subtract from Accumulator with Shift SuUB
Syntax
Direct: [<label>] SUB <dma>[,<shift>]
Indirect: [<label>] SUB {*|*+|*-}[,<shift>[,<next ARP>]]
Operands 0 < dma < 127
ARP =0or1
0 < shift £ 15 (defaults to 0)
Execution (PC) +1 = PC .
(ACC) - [(dma) x 2shift] - AcC
Affects OV; affected by OVM.
Encoding 1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct:] 0 0 0 1] Shift | o] Data Memory Address |
Indirect:{ 0 0 0 1] Shift { 1] See Section 4.1 |

Description

Words
Cycles

Example
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The contents of the addressed data memory location are left-shifted and
subtracted from the accumulator. During shifting, the low-order bits are
zero-filled. The high-order bit is sign-extended. The result is stored in the
accumulator.

1
1

SUB DATS9 (DP = 0)
or
SUB * If current auxiliary register contains 59.
Before Instruction After Instruction
MData » MData 7
emory > emory >
59 59



SUBC

Conditional Subtract SUBC

Syntax

Direct: [<label>] SUBC <dma>
Indirect: [<label>] SUBC {*|"+|"-}[,<next ARP>]

Operands 0 < dma < 127
ARP =0 or1
Execution (PC) +1 = PC
(ACC) - [(dma) x 215] - ALU output
If ALU output 2 O:
Then (ALU output) x 2 + 1 = ACC;
_Else (ACC) x 2 = ACC.
Affects OV but NOT affected by OVM (no saturation).
Encoding 1514131211109876543210
Directt[0 1 1 _0 0 1 0 ofo | Data Memory Address |
indirect|0 1 _1_0 o0 1 0 of1 | See Section 4.1 )

Description

Words
Cycles

Example

The SUBC instruction performs conditional subtraction, which may be used
for division. The 16-bit dividend is placed in the low accumulator, and the
high accumulator is zeroed. The divisor is in data memory. SUBC is exe-
cuted 16 times for 16-bit division. After completion of the last SUBC, the
quotient of the division is in the lower-order 16-bit field of the accumulator,
and the remainder is in the high-order 16 bits of the accumulator. SUBC
assumes the divisor and the dividend are both positive.

If the 16-bit dividend contains less than 16 significant bits, the dividend
may be placed in the accumulator left-shifted by the number of leading
non-significant zeroes. The number of executions of SUBC is reduced from
16 by that number. However, at least one leading zero must always be
present since both operands of the SUBC instruction must be positive.
Note that the next instruction after SUBC cannot use the accumulator.

The SUBC instruction affects OV but is not affected by OVM. Therefore, the
accumulator does not saturate upon positive or negative overflows when
executing this instruction.

The above description is for 16-bit integer division. SUBC can also be used
in .fixed-point division.

1
1
LARP ARO
LARK ARO,15
DIV SUBC DAT2 (DP = 0)

BANZ DIV
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SUBC Conditional Subtract

SUBC

Before Instruction After Instruction

Data Data
Memory Memory
2 2
ACC >41 ACC >20009

The results above show the execution of all the instructions in the code
example.
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SUBH Subtract from High Accumulator SUBH
Syntax
Difect: [<label>] SUBH <dma>
Indirect: [<label>] SUBH {*|*+|*-}[.<next ARP>]
Operands 0 < dma < 127
ARP =0or1
Execution (PC) +1 > PC
(ACC) - [(dma) x 216] =~ ACC
Affects OV; affected by OVM.
Encoding 1514131211109876543210
Directt[0 1 1 0 o o 1 ofo | Data Memory Address |
indirect[ 0 1 _1_0 o o 1 of1 | See Section 4.1 |
Description  The contents of the addressed data memory location are subtracted from the
. upper 16 bits of the accumulator. The 16 low-order bits of the accumulator
are unaffected. The result is stored in the accumulator.
The SUBH instruction can be used for performing 32-bit arithmetic.
Words 1
Cycles 1
Example SUBH  DAT33 (DP = 0)
or
SUBH * If current auxiliary register contains 33.
Before Instruction After Instruction
MData n MData 2
amery amor
33 33
ACC >A0013 ACC >60013
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vuwuavt HHUII LUVW AcCumuiator

SUBS with Sign-Extension Suppressed SUBS
Syntax

Direct: [<label>] SUBS <dma>
Indirect: [<label>] SUBS {"I"+1*-}[.<next ARP>]

Operands 0 <dma < 127
ARP =0or1

Execution (PC) +1 = PC
(ACC) - (dma) = ACC
Affects OV; affected by OVM.

Encoding 16 14 13 12 11 10 9 8 7 6 65 4 3 2 1 0
Directt|0 1 1 0o o o 1 1]o ] Data Memory Address |
Indirect| 0 1 10 o o0 1 1]71 | See Section 4.1 ]

Description  The contents of the addressed data memory location are subtracted from the
accumulator with sign-extension suppressed. The data is treated as a 16-
bit unsigned number, rather than a two’s-complement number. The accu-
mulator behaves as a signed number.

Words 1
Cycles 1
Example SUBS  DAT2 (DP = 0)

or

SUBS * If current auxiliary register contains 2.

Before Instruction After Instruction
Data Data
Merznory >F003 Mer;ory >F003

Before Instruction After Instruction

ACC >F105 Acc
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TBLR Table Read TBLR
Syntax
Direct: [<label>] TBLR <dma>
Indirect: [<label>] TBLR {*|*+|*-}[,<next ARP>]
Operands 0 < dma < 127
ARP =0 or1
Execution (PC) +1 = TOS
(ACC(11-0)) = PC
(pma) —* dma
Modify AR(ARP) and ARP as specified
(TOS) = PC
Encoding 15 14 13 12 11 10 9 8 6 5 4 3 2 1 O
pirect[o 1 1 0 o0 1 1 1]0] Data Memory Address |
indirecttf 0 1 1 _0 o0 1 1 1]1] See Section 4.1 |
Description  The TBLR instruction transfers a word from a location in program memory
to a data memory location specified by the instruction. The program mem-
ory address is defined by the low-order 12 bits of the accumulator. For this
operation, a read from program memory is performed, followed by a write
to data memory. The contents of the lowest stack location are lost when
using TBLW.
The TBLR instruction is useful for reading coefficients that have have been
stored in program ROM, or time-dependent data stored in RAM.
Words 1
Cycles 3
Example TBLR DAT6 (DP = 0)
TBLR * If current auxiliary register contains 6.

ACC

Program
Mergory

Data
Metgory

Stack

Before Instruction

9

I I
M
©0

>306

>75

>71
>48
>16
>80

ACC

Program
Mergory

Data
Meré\ory

Stack

After Instruction

>306

>306

>71
>48
>16
>16
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TBLW

_Table Write

TBLW

Syntax

Direct: [<label>] TBLW <dma>
Indirect: [<label>] TBLW {*|*+|*-}[,<next ARP>]

Operands

Execution

Encoding

0 < dma < 127

ARP =0or1

(PC) + 1 = TOS
(ACC(11-0)) = PC

(dma) ~* pma

Modify AR(ARP) and ARP as specified

(TOS) = PC

15 14 13 12 11 10 9 8

6 5

4 3 2 1 O

Direct: Lo 1 1

1 1 0 1]o]

Data Memory Address I

Indirect:lo 11

Description

Words
Cycles

Example
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1.1 0 1[1]

See Section 4.1 ]

The TBLW instruction transfers a word in data memory to program memory.
The data memory address is specifiéed by the instruction, and the program
memory address is specified by the lower 12 bits of the accumulator. A read
from data memory is followed by a write to program memory to complete
The contents of the lowest stack location are lost when

the instruction.

using TBLW.

Note that the TBLW and OUT instructions use the same external signals and
thus cannot be distinguished when writing to program memory addresses

0 through 7.

1
3

TBLW DATS
TBLW *

Data
Meg\ory

Program
Melgory

ACC

Stack

(DP = 0)

If current auxiliary register contains 5.

Before Instruction

>4339

>306

>

>34
>23
>11
>97

Data
Mergory

Program
Mergory

ACC

Stack

After Instruction

>4339
I >4339 '

>34
>23
>11
>11




XOR Exclusive-OR with Low Accumulator XOR
Syntax
Direct: [<label>] XOR <dma>
indirect: [<label>] XOR {*|*+|*-}[,<next ARP>]
Operands 0 < dma < 127
ARP =0or1
Execution (PC) +1 > PC
(ACC(15-0)).XOR.dma = ACC(1 5-0)
(ACC(31-16)) = ACC(31-16)
Encoding 16 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Direct[0 1 1 1 1 0 0 ofo | Data Memory Address |
indirect|0 1 1 1 1 0 0o of1 ]| See Section 4.1 }

Description

Words
Cycles

Example

The low half of the accumulator is exclusive-ORed with the contents of the
addressed data memory location. The upper half of the accumulator is not

affected by this instruction.

The XOR instruction is useful for toggling or setting bits of a word for
high-speed control. In addition, the one’s complement of a word can be

found by exclusive-ORing it with all ones.

1
1

XOR DAT127 (DP = 0)

or
XOR * If current auxiliary register contains 127.
Before Instruction After Instruction
Data Data
Memory >FOF0 Memory >FOFO
127 127

ACC >12345678 ACC >1234A688
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ZAC

Zero Accumulator ZAC

Syntax
Operands

Execution

Encoding

Description

Words
Cycles

Example
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[<label>] ZAC
None

(PC) +1 = PC
0~ ACC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o * 1 1 1 1 1 1 1 0o 0 o 1 0 o 1]

The contents of the accumulator are replaced with zero.

1
1

ZAC

Before Instruction After Instruction

AcC >ABA5ABA5 Acc



Zero Low Accumulator
ZALH and Load High Accumulator ZALH

Syntax
Direct: [<label>] ZALH <dma>
Indirect: [<label>] ZALH {*|"+|*-}[,<next ARP>]

Operands 0 < dma < 127
ARP =0or1

Execution (PC) +1 > PC
0 = ACC(15-0)
(dma) = ACC(31-16)

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct[0 1 1 0 0 1 0 1]o0 | Data Memory Address |
indirect:t[0 1 1 0 0 1 0o 1]1 | See Section 4.1 |

Description  ZALH loads a data memory value into the high-order half of the accumula-
tor. The low-order bits of the accumulator are zeroed.

ZALH is useful for 32-bit arithmetic operations.

Words 1
Cycles 1
Example ZALH DAT3 (DP = 0)
or
ZALH * If current auxiliary register contains 3.
Before Instruction After Instruction
Data Data

Meg\ory >3F01 Me%'lory >3F01

ACC >77FFFF ACC >3F010000
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Zero Accumulator, Load Low Accumulator
ZALS with Sign-Extension Suppressed ZALS

Syntax
Direct: [<label>] ZALS <dma>
Indirect: [<label>] ZALS {*|"+|*-}[,<next ARP>]

Operands 0 s dma < 127
ARP =0 or1

Execution (PC) +1 - PC
0 = ACC(31-16)
(dma) = ACC(15-0)

Encoding 1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Directt| 0 1 1 0 0 1 1 oo ] Data Memory Address |
Indirect:| 0 1 1 0 o0 1 1 o1 ] See Section 4.1 |

Description  The contents of the addressed data memory location are loaded into the 16
- low-order bits of the accumulator. The upper half of the accumulator is
zeroed. The data is treated as a 16-bit unsigned number rather than a
two’s-complement number. Therefore, there is no sign-extension with this

instruction.

ZALS is useful for 32-bit arithmetic operations.

Words 1
Cycles 1
Example ZALS DAT1 (DP = 0)
or
ZALS * If current auxiliary register contains 1.
Before Instruction After Instruction
Data Data

Mer1nory >F7FF Mer1nory >F7FF

ACC >7FF00033 ACC I >F7FF

4-76



5. Software Applications

The use of various key software-related processor and instruction set features
along with assembly language coding examples is explained in this section.
TMS320C1x (first-generation TMS320) instructions are tailored to digital
signal processing tasks, providing a single-cycle multiply, scaling, convo-
lution, overflow management, and many other features. There is also instruc-
tion set support for logical and arithmetic operations.

More information about specific applications can be found in the book, Digital
Signal Processing Applications with the TMS320 Family. The DSP Software
Library contains the major DSP routines and application algorithms presented
in the applications book. The TMS320 DSP Bulletin Board Service provides
access to code updates and new application reports as they become available.
See Appendix E for information about the software library and bulletin board.

Major topics discussed in this section are listed below.

[ J Processor Initialization (Section 5.1 on page 5-2)

® Interrupt Management (Section 5.2 on page 5-7)
Interrupt service routines
BIO polling
Context switching

o Program Control (Section 5.3 on page 5-16)
Software stack expansion
Subroutine calls
Addressing and loop control with auxiliary registers
Computed GOTOs

[ ] Memory Management (Section 5.4 on page 5-23)
Moving data
Moving constants into data memory

® Logical and Arithmetic Operations (Section 5.5 on page 5-29)
Bit manipulation
Overflow management
Scaling
Convolution operations
Multiplication, division, and addition
Floating-point arithmetic

® Application-Oriented Operations (Section 5.6 on page 5-42)
Companding
FIR/IIR filtering
Adaptive filtering
Fast Fourier Transforms (FFT)
PID control
Selftest routines.



Software Applications - Processor Initialization

5.1 Processor Initialization

Prior to the execution of a digital signal processing algorithm, it is necessary
to initialize the processor. Generally, initialization takes place anytime the
processor is reset.

When reset is activated by applying a low level to the RS (reset) input for a
minimum of five cycles, the TMS320C1x terminates program execution and
forces the program counter (PC) to zero. Program memory location C nor-
mally contains a B (branch) instruction in order to direct program execution
to the system initialization routine following the reset. The hardware reset also
initializes various registers and status bits.

After reset, the processor should be initialized through software. The initial-
ization routine should set up operational modes, memory pointers, interrupts,
and the remaining functions necessary to meet system requirements. This
section describes how to configure the TMS320C1x devices after reset and
provides code for processor initialization.

5.1.1 TMS32010/C10/C15 Initialization

5-2

To configure the TMS32010/C10/C15 processor after reset, the following
internal functions should be initialized:

[ ] Interrupt structure

(] Overflow mode control (OVM)

{ Auxiliary registers and auxiliary register pointer (ARP)
° Data memory page pointer (DP).

Note that the OVM (overfiow mode) bit, INTM (interrupt mode) bit, auxiliary
register pointer (ARP), and data memory page pointer (DP) are not initialized
by reset.

Example 5-1 shows coding for initializing the TMS32010/C10/C15 to the
following machine state, in addition to the initialization performed during the
hardware reset:

[ ] Interrup't enabled

o Overflow mode (OVM) disabled

® Data memory page pointer (DP) set to zero
L] Auxiliary register pointer (ARP) set to zero
[ ] Internal memory filled with zeros.



Software Applications - Processor Initialization

Example 5-1. TMS32010/C10/C15 Processor Initialization

TITL 'PROCESSOR INITIALIZATION'
IDT 'EXAMPLE'

DEF RESET, INT

REF ISR

PROCESSOR INITIALIZATION.
RESET AND INTERRUPT VECTOR SPECIFICATION.

* % % X

RORG >0

RESET B INIT  ; RS- BEGINS PROCESSING HERE

INT B ISR ; INT- BEGINS PROCESSING HERE

*

THE BRANCH INSTRUCTION AT PROGRAM MEMORY LOCATION O DIRECTS
EXECUTION TO BEGIN HERE FOR RESET PROCESSING THAT INITIAL-
IZES THE PROCESSOR. WHEN RESET IS APPLIED, THE FOLLOWING
CONDITIONS ARE ESTABLISHED FOR THE STATUS REGISTER:

OV OVM INTM 12 11 10 9 ARP 7 6 5 4 3 2 DP
ST: O X 1 1 1 11 x 111111X

* % % F * F ¥ F

INIT ROVM
LDPK O
LARK 0,255

DISABLE OVERFLOW MODE

POINT DP TO DATA PAGE O

SET LOOP COUNT FOR DATA MEM INIT TO
143 FOR 32010/11 AND 255 FOR 320C15/17

~e Ne Ne e

*

* INTERNAL DATA MEMORY INITIALIZATION.
*

ZAC ; CLEAR THE ACCUMULATOR

LARP O ; USE ARO FOR POINTER AND LOOP CONTROL
LooP SACL * ; CLEAR DATA MEMORY

BANZ LOOP ; CHECK IF DONE AND DECREMENT ARO
*
* THE PROCESSOR IS INITIALIZED. THE REMAINING APPLICATION-
* DEPENDENT PART OF THE SYSTEM SHOULD NOW BE INITIALIZED.
*

EINT ; ENABLE ALL INTERRUPTS

5.1.2 TMS320C17 Initialization

To configure the TMS320C17 devices after reset, the following internal func-
tions must be initialized:

Interrupt structure

Serial-port framing-pulse generation selection
Serial-port connection

Companding hardware

Serial-port clock

Auxiliary register pointer

Data memory page pointer

Overflow mode.

Two of the 1/0 ports are dedicated to the serial port and companding hard-
ware, the operation of which is determined by the 32 bits of the system control
register. Table 5-1 lists the control register bits with brief definitions.
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Software Applications - Processor Initialization

-Table 5-1. Control Register Bit Definitions

CR BIT # DEFINITION
PORT 0
CR3 - CRO Interrupt flags
CR7 - CR4 Interrupt mask bits
CR8 Port 1 configuration control
CR9 External framing enable for serial port transfers
CR10 XF external logic output flag latch
CR11 Serial port companding mode select
CR13 - CR12 Companding hardware enable
CR14 A-law/u-law conversion select
CR15 Serial clock (SCLK) control
PORT 1
.CR23 - CR16 Frame counter modulus
CR27 - CR24 Serial clock (SCLK) prescale control (divide ratios)
CR28 FR pulse-width control
CR30 - CR29 1/0 control on TMS320C17/E17;
CR31 Reserved for future expansion (set to 0)

Example 5-2 shows coding for initializing the TMS 320C17 serial-port and
companding hardware for interface to a codec. The following machine state
is loaded:

Set the lower control register bit 8 (CR8) to enable port 1 to access the
upper control register. To insure safe system operation, SCLK should
be left as an input to the device (CR15 set to logic 0). This prevents any
invalid serial-port timing during the initialization routine. The value
loaded into the lower control register to accomplish this is >3988.

The upper control register is set as follows:

- Long FR pulse (variable data-rate selected)

- SCLK divide ratio of 10

- FR frequency at SCLK/256 for an 8-kHz framing pulse
- The value >1CFE Ioaded into the upper control register.

The lower control register is then configured as follows:

- Interrupt flags cleared

- Active FR interrupt enabled

- Port transfers enabled by active FR

- Serial companding mode selected (see Section 5.6.1)

- Companding hardware enabled

- u-law conversion selected

- SCLK selected as an output

=~  The value >3888 now loaded into the lower control register.

Note that the interrupt flags are flip-flops. Writing a one to an interrupt
flag clears it and sets the corresponding flag to zero; i.e., a write to the
flags affects the clear or reset input of the flip-flops.



Software Applications - Processor Initialization

Example 5-2. TMS320C17 Processor Initialization

* A BRANCH INSTRUCTION AT PROGRAM MEMORY LOCATION O DIRECTS
* PROCESSOR EXECUTION HERE. THE CONTROL REGISTER VALUES ARE
* STORED IN ROM STARTING AT LOCATION 4. THESE VALUES ARE

* THEN READ INTO RAM FOR THE OUT INSTRUCTIONS TO THE CONTROL
* REGISTER. MEMORY LOCATIONS SET1-SET3 AND ONE ARE LOCATED
* ON RAM PAGE 1. THE PROGRAM MEMORY LOCATION HAS A BRANCH TO
* THE INTERRUPT SERVICE ROUTINE.

*

DEF RESET,INT,INIT
REF ISR
*
ONE EQU 1
SET1 EQU 2
SET2 EQU 3
SET3 EQU 4
*

CONSTANT ONE

LOWER CONTROL REGISTER
UPPER CONTROL REGISTER
LOWER CONTROL REGISTER

o N e N

* PROCESSOR INITIALIZATION.
* RESET AND INTERRUPT VECTOR SPECIFICATION.
*

AORG >0
RESET B INIT RS- BEGINS PROCESSING HERE
INT B ISR INT- BEGINS PROCESSING HERE

~e we o

TABLE DATA >3988
DATA >1CFE
DATA >3888

CONTROL REGISTER DATA

INIT  DINT DISABLE INTERRUPTS

ouT SET1,0
OUT SET2,1
ouT SET3,0
LDPK O

CONFIGURE LOWER CONTROL REGISTER
CONFIGURE UPPER CONTROL REGISTER
CONFIGURE LOWER CONTROL REGISTER
RESET RAM PAGE TO O

’
SOVM ; SET OVERFLOW MODE
LARP O ; USE AUXILIARY REGISTER O
LDPK 1 ; WORK IN RAM PAGE 1
LACK 1 ; ACC =1
SACL ONE ; STORE 1 IN MEMORY LOCATION ONE
LACK TABLE ; START AT LOCATION 4
TBLR SET1 ; READ VALUE >3988 TO RAM
ADD ONE,O ; INCREMENT ADDRESS
TBLR SET2 ; READ VALUE >1CFE TO RAM
ADD ONE,O ; INCREMENT ADDRESS
TBLR SET3 ; READ VALUE >3888 TO RAM
’

THE PROCESSOR IS INITIALIZED. THE REST OF THE SYSTEM THAT
IS APPLICATION-DEPENDENT SHOULD BE INITIALIZED BEFORE THE
EINT INSTRUCTION.

* % ok * *

EINT ; ENABLE INTERRUPTS
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In addition to the above configuration and code, the TMS320C17/E17 re-
quires the following:

Control register bits CR29 and CR30 must be initialized.

The data operand of the upper control register is set at >6CBE. This
selects two’s-complement companding for the serial port and 16-bit
length coprocessor mode (i.e., for interface to 16-bit processors). When
two’s-complement companding is used, there must be at least one in-
struction between an OUT instruction to the serial port transmit register
and an IN instruction from the serial port receive register.

If the TMS320C17 is programmed to generate the serial port framing
pulse using the internal timer (CR9 = 0), the FR interrupt flag will be
set regardless of whether or not the FR interrupt has been enabled.
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5.2 Interrupt Management

The interrupt function allows the current process to be suspended in order to
perform a more critical function. On the TMS32010/C1 0/C15, processor ex-
ecution may be suspended on a high-priority basis by using the INT pin. Oth-
erwise, a lower priority interrupt can be serviced by using a software (BIO)
polling technique.

The TMS 320C17 has four interrupts maskable via the system control reg-
ister. These interrupis are synchronized and multiplexed into the master inter-
rupt circuitry and have the same priority. Software polling techniques are used
to determine which input caused the interrupt when muitiple interrupts are
enabled.

Processing in the interrupt service routine (ISR) must assure that the proces-
sor context is saved before and during execution and restored when the rou-
tine is finished. Descriptions and examples of how to implement interrupt
service routines, BIO polling, and context switching are provided in this sec-
tion.

5.2.1 TMS32019/C10/C15 Interrupt Service Routines

The TMS32010/C10 and TMS320C15/E15 devices provide one maskable
interrupt (TNT). By using the TNT pin, the processor’s execution can be sus-
pended at any point in the program except after a multiply instruction. The
instruction following the MPY and MPYK instructions is always executed.

Interrupt processing on the TMS32010/C10/C15/E15 begins as follows:

1) The EINT (enable interrupt) instruction is executed, which sets the
INTM (interrupt mode) bit to O so that an interrupt can be received.
2)  When an interrupt occurs, the INTF (interrupt flag) bit is set to 1.

As interrupt servicing begins, the following sequence occurs automatically:

1)  The interrupt is acknowledged, which clears the INTF (interrupt flag)
bit to 0.

2) The INTM (interrupt mode) bit is set to 1 to disable further interrupts.

3) The current PC is pushed onto TOS (top of stack).

4) The new PCis set to 2.

During sefvicing of the interrupt, the following operations are commonly per-
formed by the user in software:

1)  Program memory address 2 will either have a service routine to save the
context of the machine or a branch to the interrupt service routine.

2) The interrupt service routine is executed. The context of the machine
can be saved and the source of the interrupt serviced. Then, the context
is restored and the interrupts enabled prior to returning from the interrupt
routine.

3) The EINT (enable interrupt) instruction is executed, which sets the
INTM (interrupt mode) bit to 0.

4) The RET instruction is executed.

The hardware interrupt can be masked at critical points in the program with
the DINT instruction. This sets the INTM (disable interrupt mode) bit to logic
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one. If an interrupt occurs while INTM equals one, the interrupt will not be
serviced until the interrupts are enabled again. However, the INTF (interrupt
flag) is set to one, and the interrupt is held pending. The interrupt will be
serviced when the INTM bit is set to zero by executing the EINT instruction.
If an interrupt is pending when an enable interrupt operation occurs, the in-
terrupt is serviced after the execution of the instruction following the EINT
instruction. This allows for a return instruction to be executed before an in-
terrupt is acknowledged.

An interrupt-driven analog input channel can be implemented using the tech-
nique described and shown in Example 5-3. However, multiple-level data
buffering will impact system 1/0 overhead. Analog systems supported by
first-generation TMS320 devices usually have information bandwidths of less
than 20 kHz. The desired sample rate can be generated by dividing the
CLKOUT signal from the TMS320. It is advisable to provide at least a one-
level data buffer to ensure the integrity of the data read by the processor. If
an 8-kHz sample rate is used (for example), the system must then respond to
an analog interrupt every 125 ps. The percentage of I/O overhead incurred
by this arrangement can be computed by determining the number of clock
cycles that the TMS320 will spend in the interrupt routine servicing each
sample and dividing by the number of clock cycles available between each
sample. Example 5-3 shows a typical interrupt service routine. Note that the
memory location flag (FLAG) contains a 1-bit flag to indicate that the required
number of samples have been received.
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Example 5-3. TMS32010/C10/C15 Interrupt Service Routine

* THIS ROUTINE SERVICES AN EXTERNAL INTERRUPT. IT MAY BE

* LOCATED AT PROGRAM MEMORY LOCATION 2, OR A BRANCH AT

* LOCATION 2 DIRECTS PROGRAM EXECUTION HERE. THE ROUTINE

* READS DATA FROM AN EXTERNAL DEVICE (A/D CONVERTER). THE

* NUMBER OF SAMPLES OBTAINED ARE STORED IN MEMORY LOCATION

* COUNT. LIMIT IS THE NUMBER OF SAMPLES NEEDED. MEMORY

* LOCATION ONE CONTAINS THE CONSTANT 1. STATUS IS ALWAYS

* STORED ON DATA PAGE 1 WHEN USING DIRECT MEMORY ADDRESSING.
* ASSUME ARO POINTS TO THE NEXT EMPTY LOCATION IN THE SAMPLE
* BUFFER.

*

ADC EQU O ; ASSIGN PAQ TO A/D CONVERTER

STATUS EQU O

ACCL EQU 1 ; ASSIGN MEM LOCATION TO SAVE STATUS/ACC
ACCH EQU 2

SAMP EQU 3 ; STORE INPUT DATA HERE

COUNT EQU 4 ; COUNT # OF SAMPLES HERE

FLAG EQU 5 ; ASSIGN MEM LOCATION TO FLAG

LIMIT EQU 32 ; ASSIGN TOTAL # OF SAMPLES REQUIRED

*

ISR SST STATUS SAVE STATUS

LDPK 1 USE DATA PAGE 1

SACL ACCL SAVE ACCUMULATOR LOW
SACH ACCH SAVE ACCUMULATOR HIGH
LARP O USE ARO

IN *-,ADC
LAC COUNT
ADD ONE

SACL COUNT
LACK LIMIT
SUB COUNT ; CHECK IF LIMIT EXCEEDED

READ FROM ADC

LOAD SAMPLE COUNTER
INCREMENT

STORE UPDATED COUNT

Ne Ne Ns we Ne N Se we owe

BGZ OK

DONE LACK 1
SACL FLAG ; YES --> SET FLAG

OK ZALH ACCH ; RESTORE ACCUMULATOR HIGH
ADDS ACCL ; RESTORE ACCUMULATOR LOW
LST STATUS ; RESTORE STATUS
EINT ; ENABLE SUBSEQUENT INTERRUPTS
RET

If the processor is using a 20-MHz clock, the number of available cycles be-
tween each sample is 625. The overhead required to service this system is
18/625 = 2.9 percent. This overhead burden can be reduced by using a FIFO
(first in, first out) to buffer the data. In this case, the TMS320 need only be
interrupted when the buffer has filled. If a 16-level FIFO is used in the example
above, this interrupt will occur every 2 ms, and the overhead burden will be
reduced to about 0.5 percent.

If two different kinds of devices are being serviced by the same interrupt rou-
tine, the BTO pin can be used to determine which device needs to be serviced
(see Section 5.2.3 for BIO polling).
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5.2.2 TMS320C17 Interrupt Service Routines

The TMS320C17/E17 have four maskable interrupts: EXINT (TMS320C17), FSR,
FSX and FR. The interrupts are maskable via the system control register bits
CR7-CR4. Bits CR3-CRO serve as the interrupt flags for the four interrupts. An
active signal on any of these pins sets the corresponding interrupt flag to one.
Since all four interrupts activate a single master interrupt flag, the interrupt
service routine (ISR) should poll all four interrupt flags and check for the cor-
responding int2rrupt source. The ISR may also need to poll the individual mask
bits (CR7-CR4) before recognizing the interrupt flag.

Interrupt processing on the TMS 320C17/E17 begins as follows:

1)  The EINT (enable interrupt) instruction is executed, which sets the
INTM (interrupt mode) bit to O so that an interrupt can be received.
2)  When an interrupt occurs, the INTF (interrupt flag) bit is set to 1.

As interrupt servicing begins, the following sequence occurs automatically:

1)  The interrupt is acknowledged, which clears the INTF (interrupt flag)
bit to 0.
) The INTM (interrupt mode) bit is set to 1 to disable further interrupts.
3)  The current PC is pushed onto TOS (top of stack).
4) The new PC is set to 2.

During servicing of the interrupt, the following operations are commonly per-
formed by the user in software:

1) Program memory address 2 will either have a service routine to save the
context of the machine or a branch to the interrupt service routine.

2) The interrupt service routine is executed. The context of the machine
may be stored and restored later if required. The following can be used
to select which interrupt to service:

a)  Use software polling techniques to determine which one of the
four flags has been set in the control register.

b)  Check for corresponding mask bits before proceeding (optional).

c)  Clear that flag (set to 0) and service the source of that flag. There
must be an interval of at least four clock cycles after the flag has
been set before clearing it.

3) The EINT (enable interrupt) instruction is executed, which sets the
INTM (interrupt mode) bit to 0.

4) The RET instruction is executed.

All interrupts are synchronized and muitiplexed into the master interrupt cir-
cuitry and have the same priority. However, interrupt priorities in polling the
interrupt flags can be established by the user. The ISR should clear the inter-
rupt flag before executing an EINT instruction or enabling the interrupts. Note
that writing a one to an interrupt flag will clear it, i.e., set the corresponding
flag to zero. In the coprocessor mode on the TMS320C17, the BIO and EXINT
lines cannot be driven externally, but are reserved for transfers to/from the
coprocessor port. An example interrupt service routine for a system with three
active interrupts enabled is given in Example 5-4. Polling is also included in
the code example.
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Example 5-4. TMS320C17 Interrupt Service Routine

* % %k % % o % * ¥ *

*.

STATUS EQU
ACCL EQU
ACCH EQU
RBUF  EQU
CREG  EQU

*

ISR SST STATUS

* % * % % * ¥ *

*
*
*

RECV SACL CREG

*

*
*

THIS ROUTINE MAY BE LOCATED AT PROGRAM MEMORY LOCATION 2,
OR A BRANCH INSTRUCTION AT LOCATION 2 DIRECTS PROGRAM
EXECUTION HERE. MEMORY LOCATION ONE CONTAINS THE
CONSTANT 1. STATUS IS ALWAYS STORED ON DATA PAGE 1 WHEN
DIRECT MEMORY ADDRESSING IS USED.

RECV IS THE SERVICE ROUTINE FOR THE RECEIVE INTERRUPT.
XINT IS THE SERVICE ROUTINE FOR THE EXTERNAL INTERRUPT.
TRANS IS THE SERVICE ROUTINE FOR THE TRANSMIT INTERRUPT.
DEF ISR,RECV
REF XINT,TRANS
; ASSIGN MEM LOCATION TO SAVE STATUS/ACC

STORE RECEIVE DATA HERE
TEMP LOCATION TO STORE CONTROL REG

AW ERO

~ o~

; SAVE STATUS

LDPK 1 ; USE DATA PAGE 1

SACL ACCL ; SAVE LOW ACCUMULATOR
SACH ACCH ; SAVE HIGH ACCUMULATOR

THIS ROUTINE CHECKS FOR THREE ACTIVE INTERRUPTS OCCURRING
AND SERVICES THEM ACCORDINGLY. IT IS ASSUMED THAT ONE OF
THREE IS THE SOURCE OF THE INTERRUPT. AFTER AN INTERRUPT
FLAG IS SET, IT MUST BE RESET BY THE INTERRUPT SERVICE
ROUTINE TO AVOID BEING INTERRUPTED AGAIN ON THE RETURN
FROM THE SUBROUTINE.

IN CREG,PAO
LAC ONE,O

READ LOWER CONTROL REGISTER
LOAD INT- INTERRUPT MASK

AND CREG INT FLAG SET?
BNZ XINT GO TO INT SERVICE ROUTINE
LAC ONE,2 LOAD FSX- INTERRUPT MASK
AND CREG FSX FLAG SET?

N Ne e N Ne e oS

BNZ TRANS GO TO TRANSMIT SERVICE ROUTINE

INTERRUPT MUST BE FSR-.
CLEAR FSR INTERRUPT FLAG

RESTORE CONTROL REGISTER
READ REC DATA FROM PORT 1

OUT CREG,PAO
IN RBUF,PAl

N~ e

RESTORE STATUS.

ZALH ACCH ; RESTORE HIGH ACCUMULATOR
ADDS ACCL ; RESTORE LOW ACCUMULATOR
LST STATUS ; RESTORE STATUS

EINT ; ENABLE INTERRUPTS

RET
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5.2.3 BIO Polling

A low priority interrupt can be serviced by using BIO polling. The BIOZ in-
struction can be used to poll (or test) the BIO pin to see if a device needs to
be serviced. This method allows a critical loop or set of instructions to be
executed without a variation in execution time. Because the test for the BIO
pin occurs at defined points in the program, context saves are minimal.

The BIO pin can be used to monitor the status of a peripheral. If the FIFO (first
in, first out) full status line is connected to the BIO pin, the FIFO is serviced
only when the FIFO is full. In the following code segment, the FIFO contains
16 data words. The BIO pin is tested after each time-critical function has been
executed.

BIOZ SKIP
CALL SERVE
SKIP

The subroutine does not have to save the registers or the status, because a
new procedure will be executed after the device is serviced, as shown below.

SERVE LARK  ARO,15
LARK  AR1,TABLE
LOOP LARP 1

IN *+,PAO,ARO
BANZ LOOP
RET

The FIFO must be serviced before another word is input or data may be lost.
This fact determines the frequency at which the polling must take place.

5.2.4 Context Switching

Context switching, commonly required when processing a subroutine call or
interrupt, may be quite extensive or simple, depending on system requirements
such as the use made of the stack or auxiliary registers. Unless the interrupt
service routine (ISR) is a simple 1/0O handler, the processing in the ISR gen-
erally must assure that the processor context is preserved during execution.
The context must be saved before executing the routine itself and restored
when the routine is finished. A common routine may be used to secure the
context of the processor during interrupt processing.

The TMS320C1x program counter is stored automatically on the hardware
stack. If there is any important information in the other TMS320C1x registers,
such as the status or auxiliary registers, these must be saved by user software.
A stack in data memory, identified by an auxiliary register, is useful for storing
the machine state when processing interrupts.

During an interrupt, all registers except the P register can be saved and re-
stored directly. However, the TMS320C1x devices have hardware protection
against servicing an interrupt between an MPY or MPYK instruction and the
following instruction. For this reason, it is advisable to follow the MPY and
MPYK instructions with LTA, LTD, PAC, APAC, or SPAC instructions that
transfer data from the P register to the accumulator.
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Examples of saving and restoring the state of the TMS320C1x processor are
given in Example 5-5 and Example 5-6. Auxiliary register 1 (AR1) is used in
both examples as the stack pointer. As the stack grows, it expands into lower
memory addresses. The registers saved are the ST status register, accumulator
(ACC), P register, T register, all four levels of the hardware stack, and auxiliary
registers ARO and AR1.

The routines in Example 5-5 and Example 5-6 are protected against interrupts,
allowing context switches to be nested. This is accomplished by the use of
the MAR *- and MAR *+ instructions at the beginning of the context save
and context restore routines, respectively. Note that the last instruction of the
context save decrements AR1 while the context restore is completed with an
additional increment of AR1. This prevents the loss of data if a context save
or restore routine is interrupted.
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Example 5-5. Context Save

TITL 'CONTEXT SAVE'
DEF  SAVE
*
* CONTEXT SAVE ON SUBROUTINE CALL OR INTERRUPT. ASSUME THAT

* AR1 IS THE STACK POINTER AND ARl = 128.
*

SAVE LARP ARl ; CHANGE POINTER TO AR1 ARl = 128
MAR  *- ; ARl = 127
*
* SAVE THE STATUS REGISTER.
*
SST  *- ; ST --> (127), ARl = 126
*
* SAVE THE ACCUMULATOR.
*
SACH *- ; ACCH --> (126), ARl = 125
SACL *- ; ACCL --> (125), ARl = 124
* .
* SAVE THE P REGISTER.
*
* THE P REGISTER CANNOT BE EASILY RESTORED FROM MEMORY. ON
* TMS320C1X DEVICES, IT IS ASSUMED THAT THE MPY AND MPYK
* INSTRUCTIONS HAVE BEEN FOLLOWED BY AN APAC, PAC, SPAC,
* LTA, OR LTD INSTRUCTION. HENCE, SAVING THE ACCUMULATOR
* HAS ALSO SAVED THE P REGISTER.
*
* SAVE THE T REGISTER.
*
MPYK 1 ;3 T ==> P
PAC ;i T --> ACC
SACL *- ;T --> (124), ARl = 123

*

SAVE ALL FOUR LEVELS OF THE HARDWARE STACK.

POP ; TOS --> acc,
SACL *- i TOS (4) --> (123), ARl = 122
POP ; STACK(3) --> ACC,
SACL *- i STACK(3) --> (122), ARl = 121
POP ; STACK(2) --> AcCC,
SACL *- i STACK(2) --> (121), ARl = 120
POP ; BOS (1) --> AcCc,
SACL *- ; BOS (1) --> (120), ARl = 119
* .
* SAVE AUXILIARY REGISTERS.
*
SAR ARO,*- ; ARO --> (119), ARl = 118
SAR AR1l,*- ; AR1 --> (118), ARl = 117

*
* SAVE IS COMPLETE.
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Example 5-6. Context Restore

TITL °'CONTEXT RESTORE'

DEF RESTOR

*
* CONTEXT RESTORE AT THE END OF A SUBROUTINE OR INTERRUPT.
* ASSUME THAT AR1 IS THE STACK POINTER AND ARl = 117.
*
RESTOR LARP ARl ; CHANGE POINTER TO AR1, ARl = 117
MAR *+ ; ARL = 118
%*
* RESTORE AUXILIARY REGISTERS.
*
LAR AR1,*+ ; (118) --> ARL, ARL = 119
LAR ARO,*+ ; (119) --> ARO, ARO = 120
*
* RESTORE ALL FOUR LEVELS OF THE HARDWARE STACK.
*
ZALS *+ ; (120) --> AcC, ARL = 121
PUSH ; (120) =-> BOS (1),
ZALS *+ ; (121) --> Acc, ARLl = 122
PUSH ; (121) --> STACK(2),
ZALS *+ ; (122) --> AcC, ARLl = 123
PUSH ; (122) --> STACK(3),
ZALS *+ ; (123) --> AcC, ARLl = 124
PUSH ; (123) --> TOS (4),
*
* RESTORE THE T REGISTER.
*
LT  *+ ; (124) --> T, ARL = 125
*
* RESTORE THE ACCUMULATOR.
*
ZALS *+ ; (125) =--> ACCL, ARl = 126
ADDH *+ ; (126) --> ACCH, ARLl = 127
*
* RESTORE THE STATUS REGISTER.
*
LST *+ ; (127) -> ST, ARLl = 128
*
* RESTORE IS COMPLETE.
*
EINT ; ENABLE INTERRUPTS
RET ; RETURN TO CALLING ROUTINE
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5.3 Program Control

To facilitate the use of the TMS320C1x in general-purpose high-speed proc-
essing, a variety of instructions are provided for software stack expansion,
implementation of subroutine calls, addressing and loop control with auxiliary
registers, and external branch control. Descriptions and examples of how to
use these features are given in this section.

5.3.1 Software Stack Expansion

The TMS320C1x has a 12-bit Program Counter (PC) and a four-level hard-
ware stack for PC storage. Provisions have been made on the TMS320C1x
for extending the hardware stack into data memory. This is useful for deep
subroutine nesting or stack overflow protection.

The hardware stack is accessible via the accumulator using the PUSH and
POP instructions. The PUSH instruction pushes the 12 LSBs of the accu-
mulator onto the top of stack (TOS). The POP instruction pops the TOS into
the 12 LSBs of the accumuilator. Following the POP instruction, the TOS can
be moved into data memory by storing the low-order accumulator word
(SACL instruction). This allows expansion of the stack into the data RAM.
From data RAM, it can easily be copied into off-chip program RAM using the
TBLW instruction. In this way, the stack can be expanded to very large levels.

When the stack has four values stored on it and one or more values are to be
put on the stack before any other values are popped off, a subroutine can be
used to perform software stack expansion. Such a routine is illustrated in Ex-
ample 5-7. In this example, the main program stores the stack starting lo-
cation in memory in the auxiliary register and indicates to the subroutine
whether to push data from memory onto the stack or pop data from the stack
to memory. If a zero is loaded into the accumulator before calling the sub-
routine, the subroutine pushes data from memory to the stack. If a one is
loaded into the accumulator, the subroutine pops data from the stack to me-
mory.

A CALL instruction should be used to initiate execution of the software stack
expansion routine. Since the CALL instruction uses the stack to save the
program counter, the subroutine pops this value into the accumulator and
saves it in a memory location. Then at the end of the subroutine, this value is
reloaded into the accumulator, and the main program is reentered using the
RET instruction. This prevents the calling routine program counter from being
stored into a memory location. The subroutine in Example 5-7 uses the BANZ
(branch on auxiliary register not zero) instruction to control all of its loops.
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Example 5-7. Software Stack Expansion

THIS ROUTINE EXPANDS THE STACK WHILE LETTING THE MAIN
PROGRAM DETERMINE WHERE TO STORE THE STACK CONTENTS OR

%*
*
* FROM WHERE TO RECOVER THEM.
*

LOC1 EQU O

*

STACK LARK AR1,3 LOAD COUNTER

’
LDPK 1 ; USE PAGE 1
BNZ PO ; IF POPD IS NEEDED, GOTO PO
POP ; LOAD PC INTO ACCUMULATOR
SACL LOC1 ; STORE PC AT MEM LOCATION LOC1
*
P LARP O ; USE ARO
LAC *+,AR1  ; LOAD ACCUMULATOR INTO MEMORY
PUSH ; PUT MEMORY ON STACK
BANZ P ; BRANCH TO P UNTIL STACK IS FULL
LAC LoCl ; LOAD PC INTO ACCUMULATOR
PUSH ; PUT RETURN ADDRESS ON STACK
RET ; RETURN TO MAIN PROGRAM
*
PO POP ; LOAD PC INTO ACCUMULATOR
SACL LoOC1 ; SAVE PC INTO MEMORY
MAR *- ; ALIGN STACK POINTER

POl LARP O ; USE ARO

POP ; PUT STACK IN ACCUMULATOR
SACL *-,0,AR1 ; STORE STACK IN MEMORY

BANZ POl ; BRANCH TO POl UNTIL SAVED
MAR *+ ; REALIGN STACK POINTER

LAC LOCl ; LOAD ACCUMULATOR WITH PC
PUSH ; PUT RETURN ADDRESS ON STACK
RET ; RETURN TO MAIN PROGRAM

5.3.2 Subroutine Calls

When a subroutine call is made using the CALL or CALA instruction, the cur-
rent contents of the program counter are stored on the top of the stack. At the
end of the subroutine, a RET (return from subroutine) instruction pops the top
of the stack to the program counter. The program then resumes execution at
the instruction following the subroutine call.

In two circumstances, a level of stack must be reserved for the machine’s use.
First, the TBLR and TBLW instructions use one level of stack. Second, when
interrupts are enabled, the PC is saved on the stack during the interrupt rou-
tine. If a system is designed to use both interrupts and a TBLR or TBLW in-
struction, only two levels of stack are available for nesting subroutine calls.

Subroutine calls can be nested deeper than two levels if the return address is
removed from the stack and saved in data memory. The POP instruction
moves the top of stack (TOS) into the accumulator and pops the stack up one
level. The return address can then be stored in data memory until the end of
the subroutine when it is put back into the accumulator. The PUSH instruction
pushes the stack down one level and then moves the accumulator onto the
TOS. Therefore, when the RET instruction is executed, the PC is updated with
the return address. This procedure allows a second subroutine to be called
inside the first subroutine without using another level of stack.
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The POP and PUSH instructions can also be used to pass arguments to a
subroutine. DATA directives following the subroutine call can be used to
create a list of constants and/or variables to be passed to the subroutine. After
the subroutine is called, the TOS points to the list of arguments following the
CALL instruction. By moving the argument pointer from the TOS to the ac-
cumulator, the list of arguments can be read into data memory using the TBLR
instruction. Between each TBLR instruction, the accumulator must be incre-
mented by one to point to the next argument in the list. To create the return
address, the argument pointer is incremented past the last element in the ar-
gument list. The PUSH instruction moves the return address onto the TOS,
and the RET instruction updates the PC. Example 5-8 illustrates a call that
passes two arguments to a subroutine.

Example 5-8. Two Arguments Passed to a Subroutine

5-18

* CLEAR BITS
*
* THIS ROUTINE CLEARS THE BITS OF A DATA WORD DESIGNATED BY
* A MASK. THE BITS SET TO ONE IN THE MASK INDICATE THE BITS
* IN THE DATA WORD TO BE CLEARED. ALL OTHER BITS REMAIN
* UNCHANGED. LOCATION ONE CONTAINS THE CONSTANT 1. MINUS
* CONTAINS A MASK INVERTER -1 OR >FFFF. TWO ARGUMENTS ARE
* PASSED TO THIS SUBROUTINE. THE CALLING SEQUENCE IS AS
* FOLLOWS:
*
* CALL CBITS
* DATA VALUE  ; 1ST ARGUMENT = ADDRESS OF DATA WORD
* DATA >0081  ; 2ND ARGUMENT = MASK
*
STATUS EQU 0 ; STORE STATUS REGISTER HERE
XRO EQU 126 ; TEMPORARY LOCATIONS
XR1  EQU 127
*
CBITS SST STATUS ; SAVE STATUS
LDPK 0 ; USE DATA PAGE 0

SAR ARO,XRO ; SAVE ARO IN TEMPORARY LOCATION

POP ; GET ADDRESS OF 1ST ARGUMENT IN ACC
TBLR XR1 ; STORE 1ST ARGUMENT IN TEMP LOCATION
LAR ARO,XR1 ; PUT 1ST ARGUMENT INTO ARO
ADD ONE ; POINT TO 2ND ARGUMENT
TBLR XR1 ; 2ND ARGUMENT = MASK
ADD ONE ; POINT TO RETURN ADDRESS
PUSH ; PUT RETURN ADDRESS ON TOS
*
LARP 0
LAC XR1 ; LOAD MASK INTO ACCUMULATOR
XOR MINUS ; INVERT MASK
AND * ; CLEAR BITS
SACL * ; STORE MODIFIED VALUE
*
LAR ARO,XRO ; RESTORE ARO
LDPK 1 : USE DATA PAGE 1
LST STATUS ; RESTORE STATUS REGISTER
RET ; RETURN TO MAIN PROGRAM

Hardware stack allocation involves allocating the usage of the various stack
levels for interrupts, subroutine calls, pipelined instructions, and the emulator
(XDS). The TMS320C1x disables all interrupts when taking an interrupt trap.
If interrupts are enabled more than one instruction before the return of the
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interrupt service routine, the routine can also be interrupted, thus using an-
other level of the hardware stack. This should be taken into consideration
when managing the use of the stack.

When nesting subroutine calls, each call uses a level of the stack. The number
of levels used by interrupts must be considered as well as the depth of the
nesting of subroutines. Two possible allocations of the hardware stack levels
are:

- 1 level reserved for interrupt service routines (ISR)
- 3 levels available for subroutine calls.

or:

- 1 level reserved for interrupt service routines (ISR)
- 2 levels available for subroutine calls
- 1 level available for TBLR/TBLW instructions.

5.3.3 Addressing and Loop Control with Auxiliary Registers

The two auxiliary registers on the TMS320C1x can be used either as pointers
for indirect addressing or as loop counters. In the indirect addressing mode,
the auxiliary register pointer (ARP) is used to determine which auxiliary reg-
ister is selected. The LARP instruction sets the ARP equal to the value of the
immediate operand. The value of the ARP can also be changed in the indirect
addressing mode; the ARP is updated after the instruction has been executed.

The contents of the auxiliary register are interpreted as a data memory address
when the indirect addressing mode is used. A sequential list of data can easily
be accessed in the indirect mode by using the autoincrement/decrement fea-
ture of the auxiliary registers. The duxiliary register can also be used as a 9-bit
counter (see Section 3.4.5). The MAR (modify auxiliary register and pointer)
instruction allows the auxiliary register selected by the ARP tc be incremented
or decremented without implementing any other operation in paraliel.

Three instructions (LARK, LAR, and SAR) either load or store a value into an
auxiliary register, independent of the value of the ARP. The first operand in
each of these instructions determines which auxiliary register is to be either
loaded or stored. This operand does not affect the value of the ARP for sub-
sequent instructions.

Example 5-9 illustrates using an auxiliary register in the indirect addressing
mode to input data into a block of memory.
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Example 5-9. Auxiliary Register Indirect Addressing

* THIS ROUTINE USES AN AUXILIARY REGISTER IN THE INDIRECT
* ADDRESSING MODE TO INPUT DATA INTO A BLOCK OF MEMORY.

*

INIT ARO AS A POINTER TO DATBLK
(AREA OF 8 WORDS IN DATA MEMORY)
SELECT ARO

INIT ACCUMULATOR AS A COUNTER

LARK ARO,DATBLK
*

LARP O

LACK 8

N oNe Ne e

LOOP IN *+,PAO
SUB ONE
BNZ LOOP

INPUT DATA
DECREMENT COUNTER (ONE = VALUE 1)
REPEAT UNTIL COUNT = O

~ we w

An aucxiliary register can also be used as a loop counter. The BANZ instruction
tests and then decrements the auxiliary register selected by ARP. Because the
test for zero occurs before the auxiliary register is decremented, the value
loaded into the auxiliary register must be one less than the number of times
the loop should be executed. The maximum number of loops that can be
counted is 512, because only 9 bits of each auxiliary register are implemented
as counters. A routine that inputs data and calculates a sum while the auxiliary
register is used to count the number of loops is shown in Example 5-10. The
accumulator contains the result.

Example 5-10. Auxiliary Register Loop Counting

5-20

* THIS ROUTINE USES AN AUXILIARY REGISTER TO COUNT THE

* NUMBER OF LOOPS.
*

LARK ARO,3 ; INITIALIZE ARO AS A COUNTER
LARP O ; SELECT ARO
ZAC ; CLEAR ACCUMULATOR

LOOP IN DATAl,PA2 ; INPUT DATA VALUE
ADD DATAl ; ADD DATA TO ACCUMULATOR
BANZ LOOP ; REPEAT LOOP FOUR TIMES
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Both indirect addressing and loop counting can be performed at the same time
to implement loops efficiently. If the data block is defined to start at location
0 in data memory, the same auxiliary register that is counting the number of
loops can also be the pointer for indirect addressing, as shown below. Note
that data locations O through 7 are loaded with input data.

LARK ARO,7 ; ARO POINTS TO END OF DATA BLOCK
LOOP IN * ,PA2 ; INPUT DATA VALUE
BANZ LOOP ; REPEAT LOOP 8 TIMES

The data block does not have to start at zero if one auxiliary register is used
for counting and the other register is used as a pointer. Example 5-11 illus-
trates how both auxiliary registers can be used at once.

Example 5-11. Auxiliary Register Pointing and Loop Counting

* THIS ROUTINE USES ONE AUXILIARY REGISTER FOR POINTING AND
THE OTHER REGISTER FOR LOOP COUNTING.

* *

LARK ARO,7 ; INITIALIZE ARO AS A COUNTER
LARK AR1,DATBLK ; ARO POINTS TO START OF DATBLK
; (DATA MEMORY AREA)
ZAC ; CLEAR ACCUMULATOR
LOOP LARP 1
ADD *+,ARO

POINT TO ARL

CALCULATE SUM OF DATA IN BLOCK
POINT TO ARO

REPEAT LOOP 8 TIMES

~e Ne oS we

BANZ LOOP

5.3.4 Computed GOTOs

Processing may be executed in a time-dependent (interrupt-driven) or a pro-
cess-dependent (user-selected) way. Selecting the processing mode may
depend on the result of a particular computation. A simple computed GOTO
can be programmed in the TMS320C1x by using the CALA instruction. This
instruction uses the contents of the accumulator as the direct address of the
call. The address of the subroutine can be computed from a data value to de-
termine which one of several routines will be executed. The return at the end
of each of these routines causes program execution to resume with the in-
struction following the CALA command. Note that the CALA instruction uses
a level of stack, because it is an indirect subroutine call, not just an indirect
branch.

Example 5-12 illustrates how to compute a call to one of several routines. The
subroutines are defined first, and then a table of branches to each subroutine
is created. The main part of the program inputs a data value of 0, 1, or 2. The
appropriate address in the table is calculated in the accumulator. An indirect
subroutine call causes the proper branch in the table to be executed.

5-21
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Example 5-12. Computed GOTO
* THIS ROUTINE COMPUTES AND EXECUTES A SUBROUTINE CALL.
*

5-22

ONE
VALUE
*

SUB1

*
SUB2

*
SUB3

*
TBL1

START

EQU
EQU

IN
RET

IN
RET

IN
RET

B
B
B

LDPK
LACK
SACL
LT
MPYK
PAC
IN
LT
MPYK
APAC
CALA
LAC

126
127

DAT1,PAO

DAT1,PAl

DAT1,PA2

SUB1
SUB2
SUB3

0

1
ONE
ONE
TBL1

VALUE,PA4

VALUE
2

DAT1

~

~

~

~e e

N N N o N

N e N,

STORE CONSTANT 1
VALUE READ FROM PORT 4.

INPUT DATA VALUE FROM PORT O

INPUT DATA VALUE FROM PORT 1

INPUT DATA VALUE FROM PORT 2

CREATE TABLE OF BRANCHES TO EACH
SUBROUTINE DEFINED

USE PAGE O

ACC =1

STORE 1 IN LOCATION ONE

LOAD T REGISTER WITH VALUE OF 1
GET ADDRESS OF TABLE

INPUT DATA VALUE OF 0O, 1, OR 2
LOAD T REG WITH VALUE FROM PA4
CALCULATE OFFSET

GO TO DESIGNATED SUBROUTINE
RETURN HERE AFTER SUBROUTINE
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5.4 Memory Management

The TMS320C1x has a modified Harvard architecture in which program me-
mory and data memory reside in two separate spaces. Therefore, the next in-
struction fetch can occur while the current instruction is fetching data and
executing the operation. The concept of the Harvard architecture increases the
speed of the device, but it requires the use of instructions to transfer a word
between data memory and program memory.

Data memory consists of 144/256 words of 16-bit on-chip RAM. All non-
immediate data operands reside within this RAM. Program memory consists
of 1.5K/4K words of 16-bit on-chip ROM, of which 1524/4000 words are
available for program use. On the EPROM versions, all 4096 words are avail-
able. Since there is no microprocessor mode of operation on the
TMS 320C17 , all program memory resides on-chip in the ROM.

The TMS320C1x uses three forms of data memory addressing: direct, indirect,
and immediate. Direct addressing uses the seven bits of the instruction word
concatenated with the data page pointer to form the data memory address.
Indirect addressing uses the lower eight bits of the auxiliary registers as the
data memory address. Immediate addressing uses part of the instruction word
for data rather than data RAM.

The structure of the TMS320C1x memory map can vary for each application
(see Section 3.4.4 for memory maps). Instructions are provided for moving
data and for moving constants into data memory. Explanations and examples
are provided in this section.

5.4.1 Moving Data

The DMOV (data move) instruction allows a data word to be written into the
next higher memory location in a single cycle without affecting the accu-
mulator. If variables are placed in consecutive locations, a DMOV instruction
can be used to move each of the variables before the next calculation is per-
formed. For example, when implementing a digital filter, the variables in the
equation represent the inputs and outputs at discrete times. This type of data
structure is typically implemented as a shift register when the data at time t is
shifted to the position previously occupied by the data at time t-1. If consec-
utive addresses in data memory correspond to consecutive time increments,
then shifts can be accomplished simply by using the DMOV instruction to
move the data item at location d to that corresponding to d+1.

The LTD instruction combines the data move operation with the LTA (load T
register and accumulate previous product) instruction operations, performing
the three operations in parallel. The operand of the instruction is loaded into
the T register; the operand is also written into the next higher memory lo-
cation; and the P register is added to the accumulator. When using the LTD
instruction, the order of the multiply and accumulate operations becomes im-
portant because the data is being moved while the calculation is being per-
formed. The oldest input variable must be muitiplied by its constant and
loaded into the accumulator first. Then the input, which is one time-unit delay
less, is multiplied and accumulated. This process is repeated until the entire
equation has been computed.
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Example 5-13 illustrates the use of the LTD instruction to move input variables
in memory as the results are calculated.

Example 5-13. Moving Data Using the LTD Instruction
* THE FOLLOWING EQUATION WILL BE IMPLEMENTED TO DEMONSTRATE
* THE USE OF THE LTD INSTRUCTION. AT THE END OF THE SUB-
* ROUTINE, LOCATION X1 IS AVAILABLE TO INPUT THE NEW SAMPLE.
*
* Y = A*X3 + B*X2 + C*X1
*
* WHERE A, B, C, X1, X2, AND X3 ARE VALUES STORED AT THESE
* ADDRESSES.
*
X1 EQU O ; USE THESE MEMORY LOCATIONS
X2 EQU 1
X3 EQU 2
Y EQU 3
A EQU 127
B EQU 126
c EQU 125
*
START ZAC ; CLEAR ACCUMULATOR
LDPK 0 ; USE PAGE 0
LT X3
MPY A ; P = A*X3
LTD X2 i T = X2, X2 --> X3, ACC = A*X3
MPY B ; P = B*X2
LTD X1 ;7 T = X1, X1 --> X2, ACC = A*X3 + B*X2
MPY C ; P = C*X1
APAC i ACC = A*X3 + B*X2 + C*X1
SACH Y,1 ; Y = ACCH
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The table below illustrates the effect on data memory after execution of the

code in Example 5-13.

Data Before Code After Code
Memory Execution Execution
>0 X1 X1
>1 X2 X1
>2 X3 X2

The DMOV feature is useful in implementing filters and convolution algo-

rithms.
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5.4.2 Moving Constants into Data Memory

Most signal processors have a separate memory space for storing constants.
By allowing communication between data and program memory, the
TMS320C1x is able to incorporate a constant memory capability with its pro-
gram memory, thus allowing an efficient use of memory space. The portion of
memory not used for storing constants is available for use as program space.

Five immediate instructions provide an efficient way to execute operations
using constants. The LARP instruction changes the auxiliary register pointer,
and the LDPK instruction changes the data page pointer. The LACK, LARK,
and MPYK instructions allow constants to be used in calculations. LACK and
LARK both require an unsigned operand with a magnitude no greater than
eight bits. The MPYK instruction allows a 13-bit signed number as an oper-
and.

A 16-bit value can be moved from program memory to data memory using the
TBLR instruction. TBLR requires that the program memory address (the
source) be in the accumulator, while the data memory address (the destina-
tion) is obtained from the operand of the instruction. This instruction is com-
monly used to look up values in a table in program memory. The address of
the value in the table is computed in the accumulator before executing the
instruction. TBLR then moves the value into data memory. TBLR is a three-
cycle instruction and, therefore, takes jonger than an immediate instruction.
However, it has more flexibility since it operates on 16-bit constants.

Sometimes it is convenient to store data operands in program ROM or external
memory, and then read them into the on-chip RAM as they are needed. Two
means are available for doing this. First, the TBLR (table read) instruction can
be used to transfer data from on-chip program ROM to on-chip data RAM.
Second, off-chip data RAM can be addressed via the IN and OUT instructions.
With some extra hardware, the IN and OUT instructions can be used to read
and write from data RAM to large amounts of external storage addressed as a
peripheral.

Data may also be transferred from data memory to program memory by means
of the TBLW instruction. The IN and OUT instructions can be used to transfer
data between the on-chip data memory and the /O space (see Section 6.1).

Note that the TBLW (table write) instruction should not be used on the
TMS 320C17 since this instruction transfers data from on-chip data RAM
to external memory. The TMS 320C17 does not directly interface to ex-
ternal memory since the port address bits (PA2-PAO) are the only address
lines external to the device.

Example 5-14 illustrates bringing the cosine value of a variable into data
memory using the TBLR instruction. Note that if the address of COSINE is
greater than 255, the address can be loaded into the accumulator by loading
the T register with a one, multiplying by the constant COSINE, and trans-
ferring it from the P register into the accumulator.
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Example 5-14. Moving a Constant into Data Memory Using the TBLR Instruction

* THIS ROUTINE USES THE TBLR INSTRUCTION TO BRING THE COSINE
* VALUE OF A VARIABLE INTO DATA MEMORY. A TABLE CONTAINING

* THE COSINE VALUES IS FIRST CREATED IN PROGRAM MEMORY.

*

COSINE DATA

START 1IN X,PAO
LACK COSINE
ADD X
TBLR COSX

LOAD TABLE ADDRESS
CALCULATE PROGRAM MEMORY ADDRESS
MOVE VALUE INTO DATA MEMORY

N N .

The following table shows the effect on data memory éfter the TBLR instruc-
tion has been executed in Example 5-14.

Program Before TBLR After TBLR
Memory " Execution Execution
>(COSINE + X) >02FF >02FF
Data
Memory
>COSX >71F2 >02FF

Another method for transferring data from program memory into data memory
uses the TBLR instruction. By using the TBLR instruction, a calculated, rather
than predetermined, location of data in program memory may be specified for
transfer. A routine using this approach is shown in Example 5-15.

Example 5-15. Moving Program Memory to Data Memory with TBLR

5-26

THIS ROUTINE USES THE TBLR INSTRUCTION TO MOVE DATA VALUES
FROM PROGRAM MEMORY INTO DATA MEMORY. BY USING THIS ROUTINE,
THE PROGRAM MEMORY LOCATION IN THE ACCUMULATOR FROM WHICH
DATA IS TO BE MOVED TO A SPECIFIC DATA MEMORY LOCATION CAN
BE SPECIFIED. ASSUME THAT THE ACCUMULATOR CONTAINS THE
ADDRESS IN PROGRAM MEMORY FROM WHICH TO TRANSFER THE DATA.

* %k ok %k ¥ ¥

TABLE LARP 1 ; USE ARl
LARK AR1,63 ; START FROM ADDRESS 63

*

LOOP  TBLR *
BANZ LOOP
RET

MOVE DATA INTO DATA RAM
TRANSFER 64 VALUES
RETURN TO CALLING PROGRAM

N owe o~

In cases where systems require that temporary storage be allocated in the
program memory, TBLW can be used to transfer data from internal data
memory to external program memory. The code in Example 5-16 demon-
strates how this may be accomplished.
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Example 5-16.

%* %k % % % ¥ *

TABLE LARK AR1l,63

*

Moving Internal Data Memory to Program Memory with TBLW

THIS ROUTINE USES THE TBLW INSTRUCTION TO MOVE DATA VALUES
FROM INTERNAL DATA MEMORY TO EXTERNAL PROGRAM MEMORY. THE
CALLING ROUTINE MUST SPECIFY THE DESTINATION PROGRAM MEMORY
ADDRESS IN THE ACCUMULATOR. ASSUME THAT THE ACCUMULATOR
CONTAINS THE ADDRESS IN PROGRAM MEMORY INTO WHICH THE DATA
IS TRANSFERRED.

; LOAD LOOP COUNT OF 64
LARK ARO,DAT1 ; LOAD STARTING ADDRESS

LOOP LARP ARO ; USE ARO

TBLW *+,AR1 ; MOVE DATA TO EXTERNAL PROGRAM RAM
BANZ LOOP ; DECREMENT AND CHECK IF DONE
RET ; RETURN TO CALLING PROGRAM

After the execution of the TBLW instruction, the following effect has occurred
on program memory:

Program Before TBLW After TBLW

Memory Execution Execution
>PROG1 >FF10 >1234
Data
Memory
>DAT1 >1234 >1234

The IN and OUT instructions are used to transfer data between the data
memory and the 1/0 space, as shown in Example 5-17 and Example 5-18.

Example 5-17.

* * o * *

Moving Data from I/O Space into Data Memory with IN

THIS ROUTINE USES THE IN INSTRUCTION TO MOVE DATA VALUES
FROM THE I/0 SPACE INTO DATA MEMORY. DATA ACCESSED FROM
I/0 PORT 7 IS TRANSFERRED TO SUCCESSIVE MEMORY LOCATIONS
ON DATA PAGE O.

INPUT LARK ARO,32 ; SET UP LOOP COUNT

*

LOOP LARP ARl

LARK AR1,DAT1 ; SET UP DESTINATION ADDRESS

USE ARl

MOVE DATA INTO DATA RAM
DECREMENT AND CHECK IF DONE
RETURN TO CALLING PROGRAM

IN *+,PA7,ARO
BANZ LOOP
RET

N e e
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Example 5-18. Moving Data from Data Memory to I/0 Space with OUT

5-28

PAGE O.

* * ¥ ¥ %

OUTPUT LARK
LARK

*

LOOP LARP
ouT
BANZ
RET

ARO, 32
AR1,DAT1

AR1
*+,PA7,ARO
LOOP

~e S N e

THIS ROUTINE USES THE OUT INSTRUCTION TO MOVE DATA VALUES
FROM THE DATA MEMORY TO THE I/O SPACE. DATA IS TRANSFERRED
TO I/O PORT 7 FROM SUCCESSIVE MEMORY LOCATIONS ON DATA

SET UP LOOP COUNT
SET UP STARTING ADDRESS

USE ARl

MOVE DATA INTO I/O SPACE
DECREMENT AND CHECK IF DONE
RETURN TO CALLING PROGRAM
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5.5 Logical and Arithmetic Operations

Although the TMS320C1x instruction set is oriented toward digital signal
processing, the same fundamental operations of a general-purpose processor,
such as bit manipulation, logical and arithmetic operations, logical and arith-
metic shifts, and overflow management, are included. Explanations and ex-
amples of how to use instructions for scaling, convolution operations,
fixed -point muitiplication/division/additien, and floating-point arithmetic are
also included in this section.

The contents of the accumulator may be stored in data memory using the
SACH and SACL instructions or stored in the stack by using the PUSH in-
struction. The accumulator may be loaded from data memory using the ZALH,
ZALS, and LAC instructions, which zero the accumulator before ioading the
data value. The ZAC instruction zeroes the accumulator. POP can be used to
restore the accumulator contents from the stack. The accumulator is also af-
fected by the execution of the ABS instruction, which replaces the contents
of the accumulator with its absolute value.

5.56.1 Bit Manipulation

A specified bit of a word from data memory can either be set, cleared, or
tested. Such bit manipulations are accomplished by using the hardware shifter
and the logic instructions, AND, OR, and XOR. In Example 5-19, operations
on single bits are performed on the data word VALUE. In this and the follow-
.ing example, data memory location ONE contains the value 1 and MINUS
contains the value -1 (all bits set).

Example 5-19. Single-Bit Manipulation

*
* CLEAR BIT 5 OF DATA MEMORY LOCATION VALUE. MEMORY LOCATION
* ONE CONTAINS CONSTANT 1. MEMORY LOCATION MINUS CONTAINS -1
* OR >FFFF.
*
LAC ONE,5 ; ACC = >00000020
XOR MINUS ; INVERT ACCUMULATOR; ACC = >OO00OFFDF
AND VALUE ; BIT 5 OF VALUE IS ZEROED

SACL VALUE

*

* SET BIT 12 OF VALUE.
LAC ONE,12 ; ACC = >00001000
OR VALUE ; BIT 12 OF VALUE
SACL VALUE

* TEST BIT 3 OF VALUE.

LAC ONE,3 ; ACC = >00000008
AND VALUE ; TEST BIT 3 OF VALUE
BZ BIT3Z ; BRANCH TO BIT3Z IF BIT IS CLEAR

More than one bit can be set, cleared, or tested at one time if the necessary
mask exists in data memory. In Example 5-20, the six low-order bits in the
word VALUE are cleared if MASK contains the value 63.
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Example 5-20. Multiple-Bit Manipulation

*

* CLEAR LOWER SIX BITS OF VALUE. MEMORY LOCATION MASK
* CONTAINS THE MASK TO CLEAR THE BITS. MEMORY LOCATION
* MINUS CONTAINS -1 OR >FFFF.
*
LAC MASK ; ACC = >0000003F
XOR MINUS ;7 INVERT ACCUMULATOR; ACC = >0000FFCO
AND VALUE ; CLEAR LOWER SIX BITS *
SACL VALUE

5.6.2 Overflow Management

The TMS320C1x has two features that can be used to handle overflow man-
agement. These include the branch on overflow conditions and accumulator
saturation (overflow mode). These features provide several options for over-
flow protection within an algorithm.

A program can branch to an error handler routine on an overflow of the ac-
cumulator by using the BV (branch on overflow) instruction. This instruction
can be performed after any ALU operation that may cause an accumulator
overflow.

The overflow mode is a feature useful for DSP applications. This mode sim-
ulates the saturation effect characteristic of analog systems. When enabled,
any overflow in the accumulator results in the accumulator contents being
replaced with the largest positive value (>7FFFFFFF) if the overflowed num-
ber is positive, or the largest negative value (>80000000) if negative. The
overflow mode is controlled by the OVM bit of the status register and can be
changed by the SOVM (set overflow mode), ROVM (reset overflow mode),
or LST (load status register) instructions. Overflows can be detected in soft-
ware by testing the OV (overflow) bit in the status register. When a branch is
used to test the overflow bit, OV is automatically reset. Note that the OV bit
does not function as a carry bit. It is set only when the absolute value of a
number is too large to be represented in the accumulator, and it is not reset
except by specific instructions. The overflow mode feature affects all arithme-
tic operations in the ALU.

In Example 5-21, the accumulator saturates to >7FFFFFFF or the largest
positive value. The BV instruction also clears the OV bit.

Example 5-21. Overflow Management
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BV OVRFLW CHECK OV BIT

BRANCH TO OVERFLOW HANDLING ROUTINE

* THE ACCUMULATOR WILL SATURATE TO THE HIGHEST POSITIVE VALUE
* WHEN OVERFLOW OCCURS. THE ACCUMULATOR CONTAINS >7FFFF423.
* MEMORY LOCATION A CONTAINS >74ED. MEMORY LOCATION B
* CONTAINS >67AF.
*

SOVM ; SET OVERFLOW MODE

LT A ; T = >74ED

MPY B ; P = >2F5B4903

APAC ; ACC = >7FFFFFFF

’
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The effect on the accumulator before and after the code execution is shown

as follows:
Before Code After Code
Execution Execution
ACC >7FFFF423 >7FFFFFFF

5.5.3 Scaling

Scaling the data coming into the accumulator or already in the accumulator is
useful in signal processing algorithms. This is frequently necessary in adapta-
tion or other aigorithms that must compute and apply correction factors or
normalize intermediate results. Scaling and normalizing are implemented on
the TMS320C1 x via shifts of data on the incoming path to the accumulator.

There are two types of shifts: logical and arithmetic. A logical shift is imple-
mented by filling the empty bits to the left of the MSB with zeros, regardless
of the value of the MSB. An arithmetic shift fills the empty bits to the left of
the MSB with ones if the MSB is one, or with zeros if the MBS is zero. The
second type of bit padding is referred to as sign extension.

Data can be left-shifted O to 16 bits when the accumulator is loaded, and
left-shifted O, 1, or 4 bits when storing from the accumulator using the SACH
instruction. These shifts can be used for loading numbers into the high 16
bits of the accumulator and renormalizing the result of a multiply. The in-
coming left shift of O to 16 bits is supplied in the instruction itself. Left shifts
of data fetched from data memory are available for loading the accumulator
(LAC), adding to the accumulator (ADD), and subtracting from the accu-
mulator (SUB). When data is left-shifted 16 bits, the ZALH, ADDH, and
SUBH instructions are used. The left-shift of 0, 1, or 4, available with the
SACH instruction, is used to shift out the extra sign bits when fractional mul-
tiplication is used (see Section 5.5.5).

The hardware shift, which is built into the ADD, SUB, and LAC instructions,
performs an arithmetic left-shift on a 16-bit word. This feature can also be
used to perform right-shifts. A right-shift of n is implemented by performing
a left-shift of 16-n and saving the upper word of the accumulator. Example
5-22 performs an arithmetic right-shift of 7 on a 16-bit number in the accu-
mulator.

Example 5-22. Arithmetic Right-Shift

SACL TEMP ; MOVE NUMBER TO MEMORY

LAC TEMP,9 ; SHIFT LEFT (16-7)

SACH TEMP ; SAVE HIGH WORD IN MEMORY

LAC TEMP ; RETURN NUMBER BACK TO ACCUMULATOR

The effect on the accumulator before and after the code execution is shown

as follows:
Before Code After Code
Execution Execution
ACC >FFFFA452 >FFFFFF48
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A logical right-shift of 4 on a 32-bit number stored in the accumulator is
shown in Example 5-23. The 32-bit results of the shift are then stored in data
memory. In this example, the accumulator initially contains the hexadecimal
number, >9D84C1B2. The variables, SHIFTH and SHIFTL, will receive the
high word (>09D8) and low word (>4C1B) of the shifted resuits.

Example 5-23. Logical Right-Shift

*

* SHIFT THE LOWER WORD. MEMORY LOCATION MINUS CONTAINS -1
* OR >FFFF.
*

SACH SHIFTH ; SHIFTH = >9D84 INITIAL VALUES
SACL SHIFTL ; SHIFTL = >C1B2
LAC SHIFTL,12 ; ACC = >FC1B2000
SACH SHIFTL ; SHIFTL = >FCI1B
LAC MINUS,12 ; ACC >FFFFFO000
XOR MINUS ; ACC >FFFFOFFF
’

AND SHIFTL ACC >00000C1B

[T

*
* SHIFT THE UPPER WORD.

ADD SHIFTH,12
SACL SHIFTL

; ACC = >F9D84C1B

; SHIFTL = >4C1B FINAL LOW VALUE
SACH SHIFTH ; SHIFTH = >F9D8

LAC MINUS,12 ; ACC >FFFFFO000

XOR MINUS ; ACC >FFFFOFFF

AND SHIFTH ; ACC = >000009D8

SACL SHIFTH ; SHIFTH = >09D8 FINAL HIGH VALUE

[T

The accumulator is affected before and after the code execution as follows:

Before Code After Code
Execution Execution
ACC >9D84C1B2 >09D84C1B

An arithmetic right-shift of 4 can be implemented using the same routine as
shown above, except with the last four lines omitted.

5.56.4 Convolution Operations
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Many DSP applications must perform convolution operations or other oper-
ations similar in form. These operations require data to be shifted or delayed.
The DMOV and LTD instructions can perform the needed data moves for
convolution.

The data move function is used for on-chip data memory. It allows a word to
be copied from the currently addressed data memory location in on-chip RAM
to the next higher location while the data from the addressed location is being
operated upon (e.g., by the CALU). The data move and the CALU operation
are performed in the same cycle. The data move function is useful in imple-
menting algorithms, such as convolutions and digital filtering, where data is
being passed through a time window. It models the z°! delay operation en-
countered in those applications.
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5.56.5 Multiplication

The TMS320C1x hardware multiplier normally performs two’'s-complement
16-bit by 16-bit multiplies and produces a 32-bit result in a single processor
cycle. To multiply two operands, one operand must be loaded into the T
register. The second operand is moved by the multiply instruction to the
multiplier, which then produces the product in the P register. Before another
multiply can be performed, the contents of the P register must be moved to the
accumulator. By pipelining multiplies and P-register moves, most multiply
operations can be performed with a single instruction.

Computation on the TMS320C1x is based on a fixed-point two’s-complement
representation of numbers. Each 16-bit number is evaluated with a sign bit, i
integer bits, and 15-i fractional bits. Thus, the number

0 0000010 10100000
— binary point

has a value of 2.625. This particular number is said to be represented in a Q8
format (8 fractional bits). Its range is between -128 (1000000000000000)
and 127.996 (0111111111111111). The fractional accuracy of a Q8 number
is about 0.004 (one part in 28 or 256).

Although particular situations (e.g., a combination of dynamic range and ac-
curacy requirements) must use mixed notations, it is more common to work
entirely with fractions represented in a Q15 format or integers in a QO format.
This is especially true for signal processing algorithms where mulitiply and ac-
cumulate operations are dominant. The result of a fraction times a fraction re-
mains a fraction, and the result of an integer times an integer remains an
integer. No overflows are possible.

Q format is a number representation commonly used when performing oper-
ations on noninteger numbers. In Q format, the Q number (15 in Q15) denotes
how many bits are located to the right of the binary point. A 16-bit number in
Q15 format, therefore, has an assumed binary point immediately to the right
of the most significant bit. Since the most significant bit constitutes the sign
of the number, then numbers represented in Q15 may take on values from +1
(represented by +0.99997...) to -1.

A wide variety of situations may be encountered when multiplying two num-

bers. Three of these situations are provided in Example 5-24, Example 5-25,
and Example 5-26.
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Example 5-24. Fraction x Fraction (Q15 x Q15 = Q30)

0100000000000000 = 0.5 in Q15
x 0100000000000000 = 0.5 in Q15
00 01000000000000 0000000000000000 = 0.25 in Q30

binary point

Two sign bits.remain after the multiply. Generally, a single-precision (16-bit)
result is saved, rather than maintaining the full intermediate precision. The
upper half of the result does not contain a full 15 bits of fractional precision
since the multiply operation actually creates a second sign bit. In order to re-
cover that precision, the product must be shifted left by one bit, as shown in
the following code excerpt:

>4000 (0.5 in Q15)

LT OP1 ; OP1 =
MPY OP2 ; OP2 = >4000 (0.5 in 015)
PAC

SACH ANS,1; ANS

>2000 (0.5 in Q15)

The MPYK instruction provides a multiply by a 13-bit signed constant. In
fractional notation, this means that a Q15 number can be multiplied by a Q12
number. The resulting number must be left-shifted by four bits to maintain full
precision.

LT OP1 ; OP1l = >4000 (0.5 in Q15)
MPYK 2048 ; OP2 = >0800 (0.5 in Q12)
PAC

SACH ANS,4 ; ANS >2000 (0.25 in Q15)

Example 5-25. Integer x Integer (Q0 x QO = Qo)
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0000000000010001 = 17 in QO

x 1111111111111011 = -5in QO
1111111111111111 1111111110101011 = -85 in QO
binary point

In this case, the extra sign bits do not change the result, and the desired pro-
duct is entirely in the lower half of the product, as shown in the following
program:

LT OP1 ; OP1 = >0011 ( 17 in QO)
MPY oP2 ; OP2 = >FFFB ( -5 in QO)
PAC

SACH ANS ; ANS

i

>FFAB (-85 in QO)
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Example 5-26. Mixed Notation (Q14 x Q14 = Q28)

0110000000000000 = 1.50 in Q14
x 0011000000000000 = 0.75 in Q14
0001 001000000000 0000000000000000 = 1.125in Q28

binary point

The maximum magnitude of a Q14 number is just under two. Thus, the maxi-
mum magnitude of the product of two Q14 numbers is four. Two integer bits
are required to allow for this possibility, leaving a maximum precision for the
product of 13 bits. in generai, the foilowing rule applies: The product of a
number with i integer bits and f fractional bits and a second number with j
integer bits and g fractional bits will be a number with (i+]j) integer bits and
(f+g) fractional bits. The highest precision possible for a 16-bit representation
of this number will have (i+i) integer bits and (15-i-j) fractional bits.

If the physical system being modelled is well understood, the precision with
which the number is modelled can be increased. For example, if it is known
that the above product can be no more than 1.8, the product can be repres-
ented as a Q14 number rather than the theoretical worst case of Q13, shown
in the following program:

LT OoP1 ; OP1 = >6000 (1.5 in Q14)
MPY oP2 ; OP2 = >3000 (0.75 in Q14)
PAC

SACH ANS,1 ; ANS = >2400 (1.125 in Q13)

The techniques illustrated in the previous three examples all truncate the result
of the multiplication to the desired precision. The error generated as a result
can be as much as minus one full LSB. This is true whether the truncated
number is positive or negative. It is possible to implement a simple rounding
technique to reduce this potential error by a factor of two, as shown in the
code sequence of Example 5-27. The maximum error generated in this exam-
ple is plus one-half LSB whether ANS is positive or negative.

Example 5-27. Rounding Technique for Muitiplication

LT OoP1l

MPY OoP2 ; OP1 * OP2
PAC

ADD ONE, 14 ; ROUND UP

SACH ANS, 1

A common operation in DSP algorithms is the summation of products. The
contents of the P register are added to the accumulator, and two values si-
multaneously read and multiplied. A data memory value is multiplied by a
program memory value. Example 5-28 shows an implementation of multiplies
and accumulates using the LTA-MPY instruction pair.
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Example 5-28. Multiply and Accumulate Using the LTA-MPY Instruction Pair

* CLOCK  TOTAL CLOCK PROGRAM TOTAL PROGRAM
* CYCLES CYCLES MEMORY MEMORY
*

ZAC 1 1

LT D1 1 1

MPY C1 1 1

LTA D2 1 1

MPY -« C2 1 1

: 2N 2N

LTA DN 1 1

MPY CN 1 1

APAC 1 2 + 2N 1 2 + 2N

5.56.6 Division
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Binary division is the inverse of multiplication. Multiplication consists of a
series of shift and add operations, while division can be broken into a series
of subtracts and shifts. Although the first-generation TMS320 does not have
an explicit divide instruction, it is possible to implement an efficient flexible
divide capability using the conditional subtract instruction, SUBC. SUBC
implements binary division in the same manner as is commonly done in long
division. Given a 16-bit positive dividend and divisor, the repetition of the
SUBC command 16 times produces a 16-bit quotient in the low accumulator
and a 16-bit remainder in the high accumulator. With each SUBC, the divisor
is left-shifted 15 bits and subtracted from the accumulator. For each subtract
not producing a negative answer, a one is put in the LSB of the quotient and
then shifted. For.each subtract producing a negative answer, the accumulator
is simply left-shifted. The shifting of the remainder and quotient after each
subtract produces the separation of the quotient and remainder in the low and
high halves of the accumulator. The similarities between long division and the
SUBC method of division are shown in Figure 5-1 where 33 is divided by 5.
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LONG DIVISION:
0000000000000110 Quotient
0000000000000101
-101_
110
-101
11 Remainder
SUBC METHOD:
32 HIGH ACC || LOW ACC 0| COMMENT
|
0000000000000000 0000000000100001 (1) Dividend is loaded into ACC. The
-10 1000000000000000 divisor Is left-shifted 15 and sub-
~90 0111111111011111 tracted from ACC. The subtraction

is negative, so discard the result
. I and shift left the ACC one bit.

|
0000000000000000 0000000001000010 (2) 2nd subtract produces negative
-1

1000000000000000 answer, so discard result and shift
ES [ ERESERRRIAREARIY ACC (dividend) left.
L] L]
o o
.

| l

0000000000000100 0010000000000000 (14) 14th SUBC command. The result
~-10 1000000000000000 is positive. Shift r_es'ult left and

0000000000000001 _ 1010000000000000 replace LSB with 1"

| l
0000000000000011  0100000000000001 (15) Result is again positive. Shift
-10 1000000000000000 result left and replace LSB with '1".
0

I !

0000000000000001  1000000000000011 (16) Last subtract. Negative answer, so

-10 1000000000000000 discard resuit and shift ACC left.
EEEEEEEEEEEERERIA
0000000000000011 0000000000000110 Answer reached after 16 SUBC
instructions.
[~ REMAINDER [ QUOTIENT |

Figure 5-1. Long Division and SUBC Division

The condition of the divisor, less than the shifted dividend, is determined by
the sign of the result. The only restriction for the use of the SUBC instruction
is that both the dividend and divisor MUST be positive. Thus, the sign of the
quotient must be determined and the quotient computed using the absolute
value of the dividend and divisor. In addition, when implementing a divide
algorithm, it is important to know if the quotient can be represented as a
fraction and the degree of accuracy to which the quotient is to be computed.
Each of these considerations can affect how the SUBC instruction is used (see
Example 5-29 and Example 5-30). Note that the next instruction after SUBC
cannot use the accumulator.
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Example 5-29. Using SUBC Where Numerator < Denominator

* THIS ROUTINE DIVIDES TWO BINARY, TWO'S-COMPLEMENT NUMBERS
* OF ANY SIGN WHERE THE NUMERATOR IS LESS THAN THE
* DENOMINATOR.

*

* BEFORE AFTER

* INSTRUCTION INSTRUCTION

*

* NUMERA 21 21

* DENOM 42 42

* QUOT 0 0.5

* (0.1 6 0)

*

DIV LARP O
LT NUMERA
MPY DENOM
PAC
SACH TEMSGN
LAC DENOM

GET SIGN OF QUOTIENT

~

SAVE SIGN OF QUOTIENT

~

ABS
SACL DENOM  ; MAKE DENOMINATOR POSITIVE
ZALH NUMERA ; ALIGN NUMERATOR
ABS ; MAKE NUMERATOR POSITIVE
LARK 0,14
*
* IF DIVISOR AND DIVIDEND ARE ALIGNED, DIVISION CAN START
* HERE.
*
KPDVNG SUBC DENOM  ; 15-CYCLE DIVIDE LOOP
BANZ KPDVNG
*
SACL QUOT
LAC TEMSGN
BGEZ DONE ; DONE IF SIGN IS POSITIVE
ZAC
SUB  QUOT
SACL QUOT ; NEGATE QUOTIENT IF NEGATIVE
DONE  RET ; RETURN TO MAIN PROGRAM
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Example 5-30. Using SUBC Where Accuracy of Quotient Specified

* THIS ROUTINE DIVIDES TWO BINARY, TWO'S-COMPLEMENT NUMBERS
* OF ANY SIGN, SPECIFYING THE FRACTIONAL ACCURACY OF THE
* QUOTIENT (FRAC).
*
* BEFORE AFTER
* INSTRUCTION INSTRUCTION
*
* NUMERA 11 11
* DENOM 8 8
* FRAC 3 3
* QUOT 17 1.375
* (1.0 1 1)
*
DN1 LT NUMERA ; GET SIGN OF QUOTIENT
MPY DENOM
PAC
SACH TEMSGN ; SAVE SIGN OF QUOTIENT
LAC DENOM
ABS
SACL. DENOM  ; MAKE DENOMINATOR POSITIVE
LACK 15
ADD FRAC
SACL FRAC ; COMPUTE LOOP COUNT
LAC NUMERA ; ALIGN NUMERATOR
ABS ; MAKE NUMERATOR POSITIVE
LAR O,FRAC
*
* IF DIVISOR AND DIVIDEND ARE ALIGNED, DIVISION CAN START
* HERE. ,
*
KPDVNG SUBC DENOM  ; 16 + FRAC CYCLE DIVIDE LOOP
BANZ KPDVNG
*
SACL QUOT
LAC TEMSGN
BGEZ DONE ; DONE IF SIGN IS POSITIVE
ZAC
SUB  QUOT
SACL QUOT ; NEGATE QUOTIENT IF NEGATIVE
DONE RET ; RETURN TO MAIN PROGRAM

5.56.7 Addition

Both operands in division must be represented in the same Q format. Enough
room must be allowed in the result to accommodate bit growth or there must
be some preparation to handle overflows. If the operands are only 16 bits
long, the result may have to be represented as a double-precision number.

Example 5-31 and Examp

numbers.

Example 5-31. Maintaining 32-Bit Results

LAC
ADD
SACH
SACL

oP1l
oP2
ANSHI
ANSLO

i
i
;
i

Q15
Q15
HIGH-ORDER 16 BITS OF RESULT
LLOW-ORDER 16 BITS OF RESULT

le 5-32 illustrate two approaches to adding 16-bit
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Example 5-32. Adjusted Binary Point to Maintain 16-Bit Results

LAC OP1,15 ; Ql4 NUMBER IN ACCH
ADD OP2,15 ; Q14 NUMBER IN ACCH
SACH ANS ; 014

Double-precision operands present a more complex problem since actual
arithmetic overflows or underflows may occur. The BV (branch on overflow)
instruction can be used to check for the occurrence of these conditions. A
second technique is the use of saturation mode operations, which will saturate
the result of overflowing accumulations to the most positive or most negative
number. Both techniques, however, result in a loss of precision. The best
technique involves a thorough understanding of the underlying physical pro-
cess and care in selecting number representations.

5.5.8 Floating-Point Arithmetic
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Although the TMS320C1x devices are fixed-point 16/32-bit microprocessors,
they can also perform floating-point computations. Using the floating-point
single-precision standard proposed by the IEEE, the TMS320C1x can perform
a floating-point multiplication in 8.4 ps and a floating-point addition in 17.2
us. For a detailed discussion of floating-point arithmetic and TMS320 source
code, refer to "Floating-Point Arithmetic with the TMS3201 0,” an application
report in the book, Digital Signal Processing Applications with the TMS320
Family.

Floating-point numbers are often represented on microprocessors in a two-
word format of mantissa and exponent. The mantissa is stored in one word.
The exponent, the second word, indicates how many bit positions from the left
the binary point is located. If the mantissa is 16 bits, a 4-bit exponent is suf-
ficient to express the location of the binary point. Because of its 16-bit word
size, the 16/4-bit floating-point format functions most efficiently on the
TMS320C1x.

Operations in the TMS320C1x central ALU are performed in two's-
complement fixed-point notation. To implement floating-point arithmetic,
operands must be converted to fixed point for arithmetic operations, and then
converted back to floating point. Conversion to floating-point notation is
performed by normalizing the input data (i.e., shifting the MSB of the data
word into the MSB of the internal memory word). The exponent word then
indicates how many shifts are required. To multiply two floating-point num-
bers, the mantissas are multiplied and the exponents added. The resulting
mantissa must be renormalized. (Since the input operands are normalized, no
more then one left shift is required to normalize the result.)

Floating-point addition or subtraction requires shifting the mantissa so that
the exponents of the two operands match. The difference between the expo-
nents is used to left-shift the lower power operand before adding. Then, the
output of the add must be renormalized. -

Instructions useful in floating-point operations are the LAC, LACK, ADD, and
SUB instructions. The mantissas are often used in Q15 format. Q format is a
number representation commonly used when performing operations on non-
integer numbers. In Q format, the Q number (15 in Q15) denotes how many
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digits are located to the right of the binary point. A 16-bit number in Q15
format, therefore, has an assumed binary point immediately to the right of the
most significant bit. Since the most significant bit constitutes the sign of the
number, then numbers represented in Q15 may take on values from +1 (re-
presented by +0.99997...) to -1.
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5.6 Application-Oriented Operations

The TMS320C1x has been designed to provide efficient implementations of
many common digital signal processing algorithms. Its features provide sol-
utions to numerically intensive problems usually characterized by multiply and
accumulate operations. Some device-specific features that aid in the imple-
mentation of specific algorithms on the TMS320C1x include companding,
filtering, Fast Fourier Transforms (FFT), and PID control. These applications
require 1/O performed either in parallel or serial.

5.6.1 Companding
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In the area of telecommunications, one of the primary concerns is the 1/0
bandwidth in the communications channel. One way to minimize this band-
width is by companding (COMpress/exPAND). Companding is defined by
two international standards, A-law and p-law, both based on the compression
of the equivalent of 13 bits of dynamic range into an 8-bit code. The standard
employed in the United States and Japan is p-law companding. The European
standard is referred to as A-law companding. Detailed descriptions and code

“examples of p-law and A-law companding are presented in "Companding

Routines for the TMS32010/TMS32020,” an application report included in
the book, Digital Signal Processing Applications with the TMS320 Family.

The technique of companding allows the digital sample information corre-
sponding to a 13-bit dynamic range to be transmitted as 8-bit data. For pro-
cessing in the TMS320C1x, it is necessary to convert the 8-bit logarithmic
data to a 16-bit linear format. Prior to output, the linear result must be con-
verted to the compressed or companded format. On the TMS3201 0/C10/C15,
companding must be performed in software using conversion routines. On-
chip companding hardware on the TMS320C17/E17 implements these
functions.

Software routines for u-law and A-law companding, flowcharts, companding
algorithms, and detailed descriptions are provided in the application report on
companding routines in the book, Digital Signal Processing Applications with
the TMS320 Family. The algorithm space and time requirements for u-law and
A-law companding on the TMS32010/C10/C15 are given in Table 5-2.

Table 5-2. Program Space and Time Requirements for u-/A-Law

Companding
FUNCTION |[WORDS OF MEMORY| PROGRAM CYCLES [TIME REQDt
Program Data Initialization Loopt us

p-Law:

Compression 105 13 17 40 8.0

Expansion 46 8 6 23 4.6
A-Law: ’

Compression 97 1 14 36 7.2

Expansion 48 7 4 25 5.0

tAssuming initialization
tWorst case



Software Applications - Application-Oriented Operations

Four modes are available for the on-chip companding hardware operation on
the TMS320C17/E17: serial encode, serial decode, parallel encode, and paral-
lel decode. On the TMS320C17/E17, the.companding hardware converts
between two’s-complement or sign-magnitude format and the companded
format.

In the serial encode mode, transmitted data is encoded according to either
u-law or A-law format. in the serial decode mode, received data is decoded
to sign-magnitude format according to the specified companding law.

In the parallel modes, either the encoder or decoder is enabled, and then data
written to port 1 is compressed or expanded. To convert sign-magnitude lin-
ear PCM to 8-bit log PCM, the encoder is enabled for parallel operation, and
the sample is written to port 1. An IN instruction from port 1 returns the
converted 8-bit log PCM value. To convert 8-bit log PCM to sign-magnitude
linear PCM, the decoder is enabled for parallel operation, and the 8-bit sample
is written to port 1. The expanded sign-magnitude value is returned on the
IN instruction from port 1. Enabling both the encoder and decoder is an un-
desirable state and should be avoided for the parallel mode. Care should be
taken to have one CUT-IN instruction sequence to port 1 for each data sam-
ple, because the execution of two OUT instructions to port 1 in succession
pushes the first sample into the transmit register TR1, preventing access for
read purposes. OUT instructions to port addresses 2 through 7 do not affect
the serial-port operation.

When the companding hardware converts to sign-magnitude data, it must be
converted to two’s-complement notation for computation in the microcom-
puter. Sign-magnitude notation consists of a sign bit in the MSB: a zero in-
dicating a positive value, and a one indicating a negative number. All bits
between the sign bit and the MSB of the data value are set to zero. For con-
versions between p-law and sign-magnitude linear PCM, the hexadecimal
value >1FFF represents the most positive value of 8191 and the value >9FFF
represents the most negative value of -81 91. For conversions between A-law
and sign-magnitude linear PCM, the hexadecimal value >OFFF represents the
most positive value of 4095 and the value >8FFF represents the most negative
value of -4095.
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5.6.2 FIR/IIR Filtering

Digital filters are a common requirement for digital signal processing systems.
The filters fall into two basic categories: Finite Impulse Response (FIR) and
Infinite Impulse Response (1IR) filters. For either category of filter, the coeffi-
cients of the filter (weighting factors) may be fixed or adapted during the
course of the signal processing. The theory and implementation of digital fil-
ters has been presented and discussed in an application report, “Implementa-
tion of FIR/IIR Filters with the TMS32010/TMS32020,” included in the book,
Digital Signal Processing Applications with the TMS320 Family.

lIR filters benefit from the fast instruction ‘cycle time of the TMS320C1x. IIR
filters typically’ require fewer multiply/accumulates. Correspondingly, the
amount of data memory for samples and coefficients is not usually the limiting
factor. Because of sensitivity to quantization of the coefficients themselves,
IIR filters are usually implemented in cascaded second-order sections. This
translates to code consisting of LTD-MPY instruction pairs. Example 5-35
provides an implementation of a second-order IR filter.

Example 5-35. Implementing an IIR Filter
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*

* THE FOLLOWiNG EQUATIONS ARE USED TO IMPLEMENT AN IIR FILTER:
*

* d(n) = x(n) + d(n-1)al + d(n=-2)a2

* y(n) = d(n)b0 + d(n-1)bl + d(n-2)b2

*

START 1IN XN,PAO ; INPUT NEW VALUE XN

LAC XN, 15 ;7 LOAD ACCUMULATOR WITH XN

LT DNM1
MPY Al
*
LTD DNM2
MPY A2
*
APAC ’
SACH DN,1 i d(n) = x(n) + d(n-1)al + d(n-2)a2
ZAC
MPY B2
*
LTD DNM1
MPY Bl
*
LTD DN
MPY BO
*
APAC

SACH YN,1 i Yy(n) = d(n)b0 + d(n-1)bl + d(n-2)b2
OUT YN,PAl ; YN IS THE OUTPUT OF THE FILTER

FIR filters also benefit from the fast instruction cycle time. In addition, an FIR
filter requires many more multiply/accumulates than does the IIR filter with
equivalent sharpness at the cutoff frequencies and with distortion and atten-
uation in the passbands and stopbands. The TMS320C1x helps solve this
problem by making longer filters feasible to implement. The TMS320C15/C17
has expanded data memory of 266 words, thus allowing additional coeffi-
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cients and samples to be stored for longer-length filters. Example 5-36 pro-
vides an implementation of a fourth-order (4 taps) FIR filter. Each tap
consists of a LTD-MPY instruction pair, uses two data memory locations, and
takes two instruction cycles to execute.

Example 5-36. Implementing an FIR Filter

*
* THE FOLLOWING EQUATION IS USED TO IMPLEMENT AN FIR FILTER:
*
* y(n)=[Ax(n-1)+Cx(n-3)+Dx(n-4)]* 2%%-16
*
START 1IN X1,PAO0 ; INPUT SAMPLE
ZAC
*
LT X4 ; x(n-4)
MPY D
*
LTD X3 ; ACC=Dx4; x(n-4))=x(n-3)
MPY C
*
LTD X2 ; ACC=Dx4+Cx3; x(n-3))=x(n-2)
MPY B
*
LTD X1 ; ACC=Dx4+Cx3+Bx2; x(n-2))=x(n-1)
MPY A
*
APAC ; ACC=Dx4+Cx3+Bx2+Ax1l
SACH Y,1
ourT Y,PAl ; OUTPUT RESULTS
B START

An implementation of an FIR filter using straightline code was shown in Ex-
ample 5-36. For longer-length FIR filters, straightline code may require larger
program memory size. Depending on the system constraints, the designer may
choose to reduce program memory size by using looped code. However,
straightline code will run much faster than looped versions. The design trade-

off should be carefully considered by the design engineer.

5.6.3 Adaptive Filtering

With FIR or IR filtering, the filter coefficients may be fixed or adapted. If the

coefficients are adapted or updated with time, then another factor impacts the

computational capacity. This factor is the requirement to adapt each of the

coefficients, usually with each sample. A means of adapting the coefficients

is the Least-Mean-Square (LMS) algorithm given by the following equation:
bli+1) = by(i) + 2B e(i) x(i-k)

where efi) = x(i) - y(i)

N-1
and y(i) = ¥ bk x(i-k)
k=0
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Quantization errors in the updated coefficients can be minimized if the result
is obtained by rounding rather than truncating. For each coefficient in the filter
at a given point in time, the factor 2B e(i) is a constant. This factor can then
be computed once and stored in the T register for each of the updates. Thus,
the computational requirement has become one multiply/accumulate plus
rounding. The adaptation of each coefficient is five instructions correspond-
ing to five clock cycles. This is shown in the instruction sequence as follows:

LARK ARO,LASTAP ;7 POINT TO DATA SAMPLE
LARK AR1,COEFFD ;7 POINT TO COEFFICIENTS

LARP ARO

LT ERRF ; errf = 2B*e(i)

MPY *-,AR1 ; P = 2B*e(i)*X(i-0)
ZALH .

APAC ; bO(i+1l) = bO(1l) + P
ADD ONE, 15 ; ROUND

SACH *+,0,ARO ; STORE bO(i+1)

Example 5-37 shows a routine to filter a signal and update the coefficients.
The total execution time of the routine is 30 + 7n where n is the filter length.
Data and program memory requirements are 5 + 2n words and 28 + 7n words,
respectively. The filter length for adaptive filters is restricted both by execution
time and memory. There is obviously more processing to be completed per
sample due to the adaptation, and the size of the on-chip data RAM limits the
number of coefficients and data samples that can be stored.

Another way to perform adaptive filtering is discussed in an application report,
“Digital Voice Echo Canceller with a TMS32020,” included in the book, Dig-
ital Signal Processing Applications with the TMS320 Family.
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Example 5-37. 32-Tap Adaptive Filter

TITL
DEF ADPFIR
X,Y

DEF

*

*

*

* LOCATION X

* LOCATION Y

*

ONE EQU 120
BETA EQU 121
ERR EQU 122
ERRF EQU 123
Y EQU 124
X EQU 125
FRSTAP EQU 32
LASTAP EQU 63
COEFFD EQU 0

*

* FINITE IMPULSE
*

~e N Ne we Ne e we we o Ne

RESPONSE

ADPFIR LDPK O ;
LARK AR1,COEFFD ;
LARK ARO,LASTAP ;
MPYK 0 ;
LAC ONE, 14 ;
LARP, ARO
*
* DO 32 TAPS.
*
FIR LT  *-,AR1 ;
MPY *+,ARO ;
*
LTD *-,AR1 ;
MPY  *+,ARO ;
*
LTD *-,AR1 ;
MPY *+,ARO ;
LTD *-,AR1 ;
MPY  *+,ARO ;
*
APAC
SACH Y,1 ;
ZAC
SUB Y ;
ADD X ;
SACL ERR ;
*
* LMS ADAPTATION OF FILTER
*
LT ERR
MPY BETA
PAC ;
ADD ONE, 14 ;
SACH ERRF,1
LAC X
SACL FRSTAP ;

'ADAPTIVE FILTER'

THIS 32-TAP ADAPTIVE FILTER USES PAGE O FOR COEFFICIENTS
AND DATA SAMPLES. THE NEWEST INPUT SHOULD BE IN MEMORY
WHEN CALLED. THE OUTPUT WILL BE IN MEMORY
WHEN RETURNED.

CONSTANT ONE

ADAPTATION CONSTANT * 2
SIGNAL ERROR

ERROR FUNCTION

FILTER OUTPUT

NEWEST DATA SAMPLE

NEXT NEWEST DATA SAMPLE
OLDEST DATA SAMPLE

START OF COEFFICIENT TABLE

(FIR) FILTER.

USE DATA PAGE O

LOAD POINTER FOR COEFF TABLE
LOAD POINTER FOR DATA SAMPLES
CLEAR THE P REGISTER

LOAD OUTPUT ROUNDING BIT

LOAD T REG WITH OLDEST SAMPLE
MULTIPLY WITH LAST COEFFICIENT

LOAD NEXT SAMPLE
MULTIPLY WITH NEXT COEFFICIENT

LOAD NEXT SAMPLE
MULTIPLY WITH NEXT COEFFICIENT

7 LOAD LAST SAMPLE

MULTIPLY WITH LAST COEFFICIENT

STORE FILTER OUTPUT
ACC = -y(i)

ADD THE NEWEST INPUT
err(i) = x(i) - y(i)

COEFFICIENTS.
errf(i) = 2*beta*err(i)
ROUND THE RESULT

INCLUDE NEWEST SAMPLE
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~

LARK ARO,LASTAP POINT TO DATA SAMPLE
LARK AR1,COEFFD ; POINT TO COEFFICIENTS

LT  ERRF ; KEEP ERRF IN T REGISTER

*

ADAPT MPY *-,AR1 ; P = 2*beta*err(i)*x(i-31)
ZALH *
APAC ; b31(i+1) = b31(i) + P
ADD ONE, 15 ; ROUND
SACH *+,0,ARO ; STORE b31(i+1)

*
MPY *-, AR1 ; P = 2*beta*err(i)*x(i-30)
ZALH *
APAC ; b30(i+1) = b30(i) + P
ADD ONE, 15 ; ROUND
SACH *+,0,ARO ; STORE b30(i+1)

*
MPY *-,AR1 i P = 2*beta*err(i)*x(i-29)
ZALH *
APAC b29(i+1) = b29(i) + P

ROUND
STORE b29(i+1)

ADD ONE, 15
SACH *+,0,ARO

w~ Ne we

MPY *- ARl ;i P = 2*beta*err(i)*x(i-0)
ZALH *
APAC bO(i+1l) = bO(i) + P

ADD ONE, 15
SACH *+,0,ARO

ROUND
STORE bO(i+1)

.~ o

RET - ;i RETURN TO MAIN FRCGRAM

6.6.4 Fast Fourier Transforms (FFT)
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Fourier transforms are another important tool often used in digital signal pro-
cessing systems. The purpose of the transform is to convert information from
the time domain to the frequency domain. The inverse Fourier transform con-
verts information back to the time domain from the frequency domain. Imple-
mentations of Fourier transforms that are computationally efficient are known
as Fast Fourier Transforms (FFTs). The theory and implementation of FFTs
has been discussed in the book, DFT/FFT and Convolution Algorithms, by
Burrus and Parks, published by John Wiley and Sons. The book also contains
a large number of sample TMS32010 and FORTRAN programs to implement
DFT/FFT algorithms. The TMS320C1x reduces the execution time of all FFTs
by virtue of its single-cycle instruction time.

Example 5-38 consists of some of the macros used in the implementation of
FFTs. Example 5-39 provides the code for an 8-point DIT (decimation in
time) FFT. The code has been structured into a number of macro calls, in-
cluding a macro for bit reversal. ‘
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Example 5-38. FFT Macros

COMBO
*

* CALCULATE PARTIAL TERMS FOR R3, R4,

¥*

*

* CALCULATE PARTIAL TERMS FOR R2,

*

L 2% 2%

*

* MACRO
*

BITREV

$MACROR1,I1,R2,I2,R3,I3,R4,I4

LAC :R3:,14 ACC
ADD :R4:,14 ACC
SACH :R3:,1 R3
SUB :R4:,15 ACC
SACH :R4:,1 R4
LAC :I13:,14 ACC
ADD :14:,14 ACC
SACH :I3:,1 I3
SUB :I4:,15 ACC
SACH :I14:,1 14

LAC :R1:,14 ACC
ADD :R2:,14 ACC
SACH :R1l:,1 R1
SUB :R2:,15 ACC
ADD :I4:,15 ACC
SACH :R2: R2
SUBH :14: ACC
DMOV  :R4: 14
SACH :R4: R4
LAC :I1:,14 ACC
ADD :12:,14 ACC
SACH :I1:,1 I1
SUB :I12:,15 ACC
SUB :I14:,15 ACC
SACH :I12: I2
ADDH :I4: ACC
SACH :I14: 14

LAC :R1:,15 ACC
ADD :R3:,15 ACC
SACH :R1l: R1
SUBH :R3: ACC
SACH :R3: R3
LAC :I1:,15 ACC
ADD :I3:,15 ACC
SACH :I1: I1
SUBH :I3: ACC
SACH :I3: I3
SEND

FOR INPUT BIT REVERSAL.
$MACROPR, PI,QR QI
ZALH :PR

ADDS :QR

SACL :PR:

SACH :QR:

ZALH :PI:

ADDS :QI:

SACL :PI:

SACH :QI:

SEND

o se e

LI T T A T 1

YOV T T T T 1

CALCULATE PARTIAL TERMS FOR R1,

I3, AND I4.

1/4) (R3)

1/4) (R3+R4)

2) (R3+R4)

4) (R3+R4)-(1/2) (R4)
) (R3-R4)

)(I3)

) (I3+14)

) (I3+14)

) (I3+I4)-(1/2) (I4)
)(13-14)

M e e

NONONNONONNONN
BB BN

(
(
(
(
(
(
(
(
(
(

R4, I2, AND I4.

1/4) (R1)
1/4) (R1+R2)
1/2) (R1+R2)

1/4) (R1+R2)-(1/2) (R2)
Y[ (R1-R2)+(I3-14)]
[(R1-R2)+(I3-14)]
[(R1-R2)-(13-1I4)]

1/2) (R3-R4)"

(R1-R2)-(13-1I4)]

(
(
(
(1
(
(
(
R (

( [

( (

( (

( (11+12)

( (I1+12)-(1/2)(12)
( [(I1-I2)-(I3-I4)]
( [(11-12)-(I3-1I4)]
( [(I1-12)+(13-14)]
( [(I1-1I2)+4(I3-1I4)]

I1, AND I3.
R1+R2)
R1+R2)+(R3+R4)]
R1+R2)+(R3+R4)]
R1+R2)-(R3+R4)]
R1+R2)-(R3+R4)]
1+12)
I1+I2)+(I3+14)]
I1+I2)+(13+14)]
I1+I12)-(I3+I14)]
I1+I2)-(I3+I4)])

o~~~ H o~~~
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*

ZERO $MACROPR,PI,QR,QI

*

* CALCULATE Re(P+Q) AND Re(P-Q)

*
LAC :PR:,15 ACC
ADD :QR:, 15 ACC
SACH :PR: PR
SUBH :QR: ACC
SACH :QR: QR

*

* CALCULATE Im(P+Q) AND

*
LAC :PI:, 15 ACC
ADD :QI:, 15 ACC
SACH :PI: PR
SUBH :QI: ACC
SACH :QI: OR
$END

*

PIBY4 $MACROPR,PI,QR,QI,W

*
LT tW: - T REG
LAC :QI:,14 ACC
SUB :QR:,14 ACC
SACH :QI:,1 QI
ADD :QR:,15 ACC
SACH :QR:,1 QR
LAC :PR:, 14 ACC
MPY :QR:
APAC ACC
SACH :PR:,1 PR
SPAC , ACC
SPAC ACC
SACH :QR:,1 OR
LAC :PI:, 14 ACC
MPY :QI:
APAC ACC
SACH :PI:,1 PI
SPAC ACC
SPAC ACC
SACH :QI:,1 QI
$SEND

*

PIBY2 $MACROPR,PI,QR,QI

*

* CALCULATE Re(P+jQ) AND Re(P-jQ)
*

LAC :PI:, 15 ACC
SUB :QR:, 15 ACC
SACH :PI: PI
ADDH :QR: ACC
SACH :QR: QR

Im(P-Q)

P REG

P REG

{1 T

LI T T T T T I TR T TR TR

o nn

PR+QR) - (QR)

(1/2)(
(1/2)(
(1/2) (PR+QR)
(1/2)(
(1/2) (PR-QR)

PI+QI)-(QI)
PI-QI)

HHEREE
NONNNN

2)(
2)(
2) (PI+QI)
2)(
2)(

=
]

aalaans
NNNNNNNNNNN O

-(QI+QR) *W]
- (QI+QR) *W]

I+(QI-QR)*W]
I;(QI—QR)*W]
~(QI-QOR)*W]
-(QI-QR)*W]

NN AN AN AN AN AN N N N o~

B2 e e e e e e

NONONONNNNN
NADNBAEBDNBAENDDONNEN

P
P
P
P
QI-QR)*W
P
P
P
P
)

PI-QR)
PI-QR)
PI-QR)+(QR)
PI+QR)

~e e~~~
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*

* CALCULATE Im(P+jQ) AND Im(P-3jQ)
*

*
PI3BY4
*

LAC :PR:,15 ACC
ADD :QI:, 15 ACC
SACH :PR: PR
SUBH :QI: ACC
DMOV :QR: OR
SACH :QR: QR
$END

SMACROPR,PI,QR,QI,W

LT tW: T REG
LAC :QI:, 14 ACC
SUB :QR:,14 ACC
SACH :QI:, 1 QI
ADD :QR:,15 ACC
SACH :QR:, 1 QR
LAC :PR:,14 ACC
MPY :QI: P REG
APAC ACC
SACH :PR:,1 PR
SPAC ACC
SPAC ACC
MPY :QR: P REG
SACH :QR:,1 QR
LAC :PI:, 14 ACC
SPAC ACC
SACH :PI:,1 PI
APAC ACC
APAC - ACC
SACH :QI:,1 QI
$END

O T T 1 1 T

I-QR)*W
PR+ (QI-QR) *W]
PR+ (QI-QR) *W]

(

(

[

E
[PR-(QI-QR) *W]
(QI+QR) *W

[PR- (QI-QR) *W]
(PI)
[PI-(QI+QR)*W]
[ I;(QI+QR)*W]
(PI

E I+(QI+QR)*W]

P
P
P
PI+(QI+QR)*W]
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Example 5-39. An 8-Point DIT FFT

* THIS ROUTINE IMPLEMENTS AN 8-POINT DIT FFT. ASSUME THAT
TWIDDLE FACTOR = W VALUE STORED IN MEMORY LOCATION W.

*

*

XOR EQU 00
- X0I EQU 01

X1R EQU 02

X1I EQU 03

X2R EQU 04

X21I EQU 05

X3R EQU 06

X3I EQU 07

X4R EQU 08

X41 EQU 09

X5R EQU 10

X51 EQU 11

X6R EQU 12

X61 EQU 13

X7R EQU 14

X71 EQU 15

W EQU 16 ]

WVALUE EQU >5A82 ; VALUE FOR SIN(45) OR COS(45)
*

* INITIALIZE FFT PROCESSING. ASSUME TWIDDLE FACTOR =
* W VALUE STORED IN MEMORY LOCATION W.
*

FFT ROVM 7 RESET OVERFLOW MODE
LDPK 0 ; SET DATA PAGE POINTER TO O
*

* BIT-REVERSED INPUT SAMPLES.
*
BITREV X1R,X1I,X4R,X4I
BITREV X3R,X3I,X6R,X6I

FIRST AND SECOND STAGES COMBINED WITH DIVIDE-BY-4
INTERSTAGE SCALING.

* * * *

COMBO XOR,X0I,X1R,X1I,X2R,X2I,X3R,X3I,
COMBO X4R,X4I,X5R,X5I,X6R,X6I,X7R,X71.

*

THIRD STAGE WITH DIVIDE-BY-2 INTERSTAGE SCALING.

* *

ZERO XOR,X0I,X4R,X41
PIBY4 - X1R,X1I,X5R,X5I,W
PIBY2 X2R,X2I,X6R,X6I
PI3BY4 X3R,X3I,X7R,X7I,W
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5.6.5 PID Control

Control systems are concerned with regulating a process and achieving a de-
sired behaviour or output from the process. A control system consists of three
main components: sensors, actuators, and a controller. Sensors measure the
behavior of the system. Actuators supply the driving force to ensure the de-
sired behaviour. The controller generates actuator commands corresponding
to the error conditions observed by the sensors and the control algorithms
programmed in the controller. The controller typically consists of an analog
or digital processor.

Analog control systems are usually based on fixed components and are not
programmable. They are also limited to using single-purpose characteristics
of the error signal, such as P (proportional), | (integral), and D (derivative),
or their combination. These limitations, along with other disadvantages of
analog systems such as component aging and temperature drift, are causing
digital control systems to increasingly replace analog systems in most control
applications.

Digital control systems that use a microprocessor/microcontroller are able to
implement more sophisticated algorithms of modern control theory, such as
state models, deadbeat control, state estimation, optimal control, and adaptive
control. Digital control algorithms deal with the processing of digital signals
and are similar to DSP algorithms. The TMS320C1x instruction set can
therefore be used very effectively in digital control systems.

The most commonly used algorithm in both analog and digital control systems
is the PID (Proportional, Integral, and Derivative) algorithm. The classical PID
algorithm is given by

u(t) = Kp e(t) + K fedt + Kg de/dt
The PID algorithm must be converted into a digital form for implementation
on a microprocessor. Using a rectangular approximation for the integral, the
PID algorithm can be approximated as

u(n) = u(n-1) + Ky e(n) + K2 e(n-1) + K 3 e(n-2)

" This algorithm is implemented in Example 5-40.
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Example 5-40. PID Control

TITL 'PID CONTROL'
DEF PID
*

* THIS ROUTINE IMPLEMENTS A PID ALGORITHM.
*

UN EQU O ;7 OUTPUT OF CONTROLLER
EO EQU 1 ; LATEST ERROR SAMPLE
El EQU 2 ;7 PREVIOUS ERROR SAMPLE
E2 EQU 3 ; OLDEST ERROR SAMPLE
K1 EQU 4 ; GAIN CONSTANT

K2 EQU 5 ;7 GAIN CONSTANT

K3 EQU 6 ; GAIN CONSTANT

*

* ASSUME DATA PAGE O IS SELECTED.
*

PID IN EO,PA0 ; READ NEW ERROR SAMPLE

LAC UN ; ACC = u(n-1)
LT E2 ; LOAD T REG WITH OLDEST SAMPLE
MPY K2 i P = K2*e(n-2)

’

’

r

’
LTD E1 ; ACC = u(n-1)+K2*e(n-2)
MPY K1 ; P = Kl*e(n-1)
LTD EO 7 ACC = u(n-1)+Kl*e(n-1)+K2*e(n-2)
MPY KO ; P = KO*e(n)
APAC ‘ ;7 ACC = u(n-1)+KO*e(n)+Kl*e(n-1)
H +K2*e(n-2)

; STORE OUTPUT

; SEND IT

SACH UN,1
OUT UN,PAl

The PID loop takes 13 cycles to execute or 2.6 us at a 20-MHz clock rate. The
TMS320 can also be used to implement more sophisticated algorithms such
as state modeling, adaptive control, state estimation, Kalman filtering, and
optimal control. Other functions that can be implemented are noise filtering,
stability analysis, and additional control loops.

5.6.6 Selftest Routines
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A selftest program can effectively perform incoming quality verification or be
used as a powerup device verification tool. Texas Instruments has developed
a selftest program to check out the functionality of a TMS320C1x device be-
fore branching to the user code. This program is not intended to provide a
means of logic debug but rather to indicate device pass/fail from which it can
be determined whether or not the TMS320C1x is still functional.

When designing a DSP device, Texas Instruments runs very thorough patterns
through the logic to test all the stages. In these patterns, worst-case condi-
tions and transitions are forced in order to verify logic design prior to manu-
facturing. Likewise, the speed and electrical specifications are thoroughly
tested. In production manufacturing, every TMS320C1x is tested to meet the
functionality, speed, and power specifications of the device before it is
shipped. The drive levels and loading of lines are checked at full speed and
over varying temperature.

The 460-word selftest program for the TMS320C1x exercises most of the
on-chip resources of the device with a minimal amount of external circuitry.
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Note that this code is intended for testing on-chip resources and will not ex-
ercise the external interface lines.

Example 5-41 contains a small portion of this selftest program, which checks
out the ALU section. The ALU test is designed to validate the basic operation
of the circuit. It consists of a series of subtests to verify addition and sub-
traction operations of both halves of the 32-bit operation as well as carry and
overflow calculations, absolute value, and SUBC operation. A failure in any
of these tests will set the error code in the accumulator to >100X where X is
the number of the subtest that has failed.

Other sections of this selftest check the auxiliary registers, on-chip data RAM,
on-chip program ROM (longitudinal redundancy test), status register and
branches, pre- and post-scaling shifters, multiplier, and the instruction set.

An applications brief is available which discusses the code segments that
comprise the TMS320C1 x selftest program as well as how to link and execute
this code. The applications brief and selftest code are available via the
TMS320 DSP Bulletin Board Service (see Appendix E).
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Example 5-41. Selftest Routine

* THIS PROGRAM EXECUTES AN INTERNAL SELFTEST OF THE TMS320C1X
* MICROCOMPUTER ALU. A FAILURE IN ANY OF THESE TESTS WILL SET

* THE ERROR CODE IN THE AC

* NUMBER OF THE SELFTEST THAT HAS FAILED.
*

*

RORG

0

* RESET AND INTERRUPT VECTORS.
*

BEGIN B

*

B

START
INTRPT

.
H
i

RESET SOFT VECTOR
INTERRUPT SOFT VECTOR

* REQUIRED DATA VALUES FOR TEST PROGRAMS.
*

*

DATA
DATA
DATA
DATA

>FFFF
>AAAA
>5555

>

0

N Ne we we

RAM TEST PATTERN 1
RAM TEST PATTERN 2
RAM TEST PATTERN 3
RAM TEST PATTERN 4

* PROGRAM INITIALIZATION DP = 0O AND DISABLE INTERRUPTS.
*

START EQU

*

LDPK
DINT

$
0

.
i
i
o
H

START INITIALIZATION ROUTINE
START IN ZERO DATA PAGE
DISABLE EXTERNAL INTERRUPTS

* ARITHMETIC LOGIC UNIT TEST.
*

ALU

ALU1l

ALU2
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EQU
LACK
SACL
LACK
TBLR
ADD
TBLR
ADD
TBLR
ADD
TBLR
LACK
SACL

ZAC
ADDS
AND
OR
SUBS
BZ

LACK
ADD
B

ZALH
ADDH
SACH
ZALH
ABS
SUBH
BZ

NVIO0OAOULOHDDMHN

[l
o

LU3

WO NS NS Ne NS Ne N Ne Ne S we we

~ N we e N N s we we

Nt Ne N Se N owe we

GET INCREMENT VALUE
STORE IT IN REGS

POINT ACC TO PATTERNS TABLE
PUT TABLE VALUE IN REG4
INCREMENT TABLE ADDRESS
PUT TABLE VALUE IN REGS5
INCREMENT TABLE ADDRESS
PUT TABLE VALUE IN REG6
INCREMENT TABLE ADDRESS
PUT TABLE VALUE IN REG7
SET ERROR CODE VALUE
STORE CODE IN REG2

CLEAR OUT ACCUMULATOR

ADD IN >AAAA PATTERN

AND WITH >AAAA PATTERN

OR WITH >5555 PATTERN

SUBTRACT -1 FROM PATTERN

IF ACC CLEARED, GO TO NEXT TEST

IF NOT, THEN SET TEST 1 CODE
ADD IN ERROR CODE
EXIT TO ERROR ROUTINE

ADD HIGH THE >AAAA PATTERN
SUBTRACT HIGH THE >5555 PATTERN
SAVE THE VALUE

RESTORE THE VALUE

TAKE ABSOLUTE VALUE

SUBTRACT HIGH >10000

IF ACC CLEARED, GO TO NEXT TEST

CUMULATOR TO >100X WHERE X IS THE
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*

ALU3

ALU4

ALUS

ALU6

LACK.

ADD
B

LAC
ADD
BZ

LACK
ADD
B

ADD
ABS
SUB
BZ

LACK
ADD
B

LACK
SACL
LACK
SUBC
NOP

SUBC
NOP

.

SUBC
NOP
SACH
SACL
LACK
XOR
BZ

LACK
ADD
B

LACK
XOR
BZ

LACK
ADD

2
2,8
ERROR

4,12
8,12
ALU4
3

2,8
ERROR
4

8
ALUS
2,8
ERROR

>40

>FF *

~ ne e ~e we we ~e we we

~e S N w0

w~e we we

e Ne we Ne Ne Ne e

e W we we we we we

Ne e we ~e we we

~ e e

IF NOT, THEN SET TEST 2 CODE
ADD IN ERROR CODE
EXIT TO ERROR ROUTINE

LOAD ACC WITH >FFFFFO00 PATTERN
ADD >00001000 TO IT
IF ACC CLEARED, GO TO NEXT TEST

IF NOT, THEN SET TEST 3 CODE
ADD IN ERROR CODE
EXIT TO ERROR ROUTINE

LOAD ACC WITH >FFFFFFFF PATTERN
TAKE ABSOLUTE VALUE
SUBTRACT >00000001
IF ACC CLEARED, GO TO NEXT TEST

IF NOT, THEN SET TEST 4 CODE
ADD IN ERROR CODE
EXIT TO ERROR ROUTINE

GET DIVISOR = 64
SAVE IN REGO

GET DIVIDEND = 255
1ST STAGE OF DIVIDE
REQUIRED NOP

2ND STAGE OF DIVIDE
REQUIRED NOP

16TH STAGE OF DIVIDE

REQUIRED NOP

SAVE REMAINDER

SAVE QUOTIENT

GET QUOTIENT COMPARISON MASK
COMPARE WITH CALCULATED ANSWER
IF ACC CLEARED, GO TO NEXT TEST

IF NOT, THEN SET TEST 5 CODE
ADD IN ERROR CODE
EXIT TO ERROR ROUTINE

GET REMAINDER COMPARISON MASK
COMPARE WITH ANSWER
IF ACC CLEARED, GO TO NEXT TEST

IF NOT, THEN SET TEST 6 CODE

ADD IN ERROR CODE
EXIT TO ERROR ROUTINE
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6. Hardware Applications

Information and examples on how to interface the TMS320C1x (first-
generation TMS320) to external devices are presented in this section. The
examples given are general enough in nature that they may be easily adapted
to fit a particular system requirement.

The following buses, ports, and control signals provide system interface to the
TMS320C1x processor:

12-bit address bus (A11-A0)

16-bit data bus (D15-D0)

3-bit port address bus

Memory control signals (MC/MF or MC/PM)

Reset (RS) )

Interrupt (INT) and branch control (BIO)

Enable signals (DEN, MEN, and WE)

External flag (XF))

Serial port clock (SCLK)

Serial port receive/transmit channel inputs/outputs (DR/ DX)
Serial port framing inputs and output (FSR, FSX, and FR)
Coprocessor port read/write signals (RD/WR)
Coprocessor latch signals (TBLF/RBLE).

Major hardware applications discussed in this section are listed below.

Expansion Memory Interface (Section 6.1 on page 6-2)
- Program ROM expansion
- Data RAM expansion

Codec Interface (Section 6.2 on page 6-6)

A/D and D/A Interface (Section 6.3 on page 6-8)
1/0 Ports (Section 6.4 on page 6-10)
Coprocessor Interface (Section 6.5 on page 6-11)

System Applications (Section 6.6 on page 6-13)
- 2400 bps modem

- Speech synthesis system

- Voice store-and-forward message system.
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6.1 Expansion Memory Interface

The TMS320C1x can be interfaced to a wide variety of memory and 1/0 de-
vices. The TMS832010/C10 and TMS320C15/E15 devices can be interfaced
to up to 4K words of external program memory. Expansion of program mem-
ory is accomplished directly through the use of the MEN (memory enable) and
WE (write enable) control lines, with memory accesses occurring in a single
cycle. ) .

6.1.1 Program ROM Expansion

Twelve TMS32010 output pins (A11-AQ) are available for addressing external
memory. They contain either the buffered outputs of the program counter or
the I/0O port address.

Read operations are performed on external memory either during opcode or
operand fetches or during the execution of a TBLR (table read) instruction.
Write operations have no effect on the circuit. When a read operation occurs,
an address is placed on the address bus, and the MEN (memory enable) strobe
is generated by driving MEN low to enable external memory. The instruction
word is then transferred to the TMS32010 via the 16-bit data bus.

A memory address being placed on the bus beéomes valid following a maxi-
mum delay (tgq) from the falling edge of CLKOUT. The combined delay of:

td1 + ta(a) * tsy(D) = Minimum cycle time t ¢(c)

where ta(A) = memory access time of EPROM from address valid
tsu(D) = setup time form data bus valid prior to CLKOUT!

serves as the timing constraint used when calculating te(C)-

When only external program ROM is required, a minimum system can consist
of a TMS320C10/C15 and up to 4K words of external program memory
(TMS27C292), as shown in Figure 6-1. The MEN signal and the address
(A11-A0) and data (D15-DO0) lines on the TMS320C10/C15 are connected
directly to the TMS27C292 memories, and no address decoding is required.
The memories used are a pair of Texas Instruments TMS27C292 4K x 8 ROMs,
configured in parallel for a direct 16-bit interface to the TMS320C10/C15.
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2
TMS320C10/C15 TMS27C292 TMS27C282
A11-A0 A10-A0 A10-A0
a7-a0 Q7-a0
MEN d G1 G1
D15-D8 A
D7-DO A

Figure 6-1. Minimum Program ROM Expansion

A very low chip-count system can result when using the low-cost
TMS32010-16. The use of EPROMSs in an external program memory interface
to the TMS32010- 16 allows the implementation of 4K words of non-volatile
program memory along with the added flexibility of reprogrammability, thus
providing for system development, future program expansion, and/or upgrade
modification. Single-cycle memory access using a direct memory interface re-
quires no additional external interface logic.

On the TMS32010- 16, t41 with a maximum value of 50 ns and tg,(p) with a
minimum value of 50 ns are both constants; therefore, t3(a) is the only re-
maining variable used in determining the minimum clock cycle time of the
system. For the circuit shown in Figure 6-2 (with ta(a) = 170 ns), inserting
these values into the equation yields tc(c) min = 250 ns.

The memories used in Figure 6-2 are a pair of Texas Instruments
TMS2732A-17 4K x 8 EPROMs, configured in parallel for a direct 16-bit in-
terface to the TMS32010-16. These EPROMs display a 170-ns access time.
However, other EPROMs may be used with access times best suited to a par-
ticular application as long as the TMS32010-16 clock frequency has been
selected to allow for the access time of the EPROMs chosen.
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6.1.2 Data

6-4

TMS32010-16 TMS2732A
A1-AO A11-A0
Qs-a1
. E
MEN G/Npp
D15-D8 A8
D7-DC A

Figure 6-2. EPROM Interface to the TMS32010-16

Contention for the data bus is not a concern in this memory configuration.
Therefore, the E (chip enable) pin for the EPROM pair has been tied to ground
to avoid unnecessary switching transients that could be induced if the chip
enables were toggled upon memory access.

RAM Expansion

No direct memory expansion is provided on the TMS320C1x. However, if
RAM is used for external program memory, this memory can be used to store
data information, accessed using the TBLR and TBLW instructions. These in-
structions, however, take three cycles to execute.

If larger memory or faster memory accesses are required, an alternative memory
expansion scheme using /0 ports can be implemented for a TMS320C1x
device. In this case, additional RAM can be used to supplement internal data
memory, and can be accessed in only two cycles using the IN and OUT in-
structions. If RAM is to be used for program memory, additional logic must
be included to distinguish between an 1/0 write (OUT) and a program mem-
ory write (TBLW).

Figure 6-3 provides an example of external data memory expansion. The de-

sign consists of up to 16K words of static RAM (IMS1420), addressed by the

lower 14 bits of a 16-bit counter (74ALS193). In the case of the IMS1420s,

the address of the data to be accessed is loaded into the counter by imple-*
menting an OUT instruction to port 0. This loads the data bus into the coun-

ters. Memory can then be read from or written to sequentially by doing an IN

or OUT instruction to port 1. The MSB in the counters determines whether the

memory address is incremented (MSB = 0) or decremented (MSB = 1) after

a read or write of data memory. Memory continues to be addressed sequen-

tially until new data is loaded into the counters.
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18K X 18 DATA RAM
ez
PN (4K X 1 70-NS SRAM)
(74AL8193) | 44
(4 UNITS) [ A13-A0
A15(MSB)

U D CS WE

16
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_

WRITE RAM
READ RAM
PA PA A8 s
DECODER DECODER
(T4AS138) (74AS138)
b s 1L
WE DEN
D15-D0 [T
TMS320C 1x
PA2-PAO

Figure 6-3. Data RAM Expansion

Dynamic memories may also be used; however, these devices may impose
additional constraints on the system designer. For example, some memory
cycle times may not allow consecutive IN/OUT/IN instruction sequences.
Memory refresh must also be considered. Since the TMS320C1x does not
implement "wait” states, memory refresh must be generated transparent to the.

processor.

For additional information regarding interfacing to TM8320C1 x devices, refer
to the book, Digital Signal Processing Applications with the TMS320 Family.
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6.2 Codec Interface

6-6

In areas of telecommunications, speech processing, and other applications
that require low-cost analog 1/0 devices, a combo-codec may be useful. A
combo-codec consists of nonlinear A/D and D/A converters with antialiasing
and smoothing filters and data storage registers. For additional information
on combo-codecs, refer to the TCM29C13/C14/C16/C17 Combined Sin-
gle-Chip PCM Codec and Filter Data Sheet.

The TMS 320C17/E17 is capable of direct interface to serial devices such
as combo-codecs, thus reducing chip count and improving system through-
put. These TMS320 devices can also compand (COMpress and exPAND) a
PCM (Pulse Code Modulation) data stream, acquired by the codec, through
the use of on-chip companding hardware.

Figure 6-4 shows the TMS 320C17/E17 interfaced to a TCM29C13 com-
bo-codec to demonstrate direct serial-port interface capability. A standalone
full-duplex serial interface is shown, in which the TMS 320C17/E17 pro-
vides the serial clock for bit transmission. The codec is sampled every 125 us
(8-kHz frequency), at which time an 8-bit PCM byte is exchanged between
the two devices. A second port can also be interfaced to the
TMS 320C17/E17 with no additional logic or interconnections since these
devices implement two independent serial ports.

Timing for the serial interface system is controlled by the serial-port clock
(SCLK). SCLK is configured as an output from the TMS 320C17/E17 , and
its frequency is set to 2.048 MHz (see Section 3.9). A 20.48-MHz crystal is
input to the TMS320 as its system clock. The SCLK frequency is derived from
this system clock by a divide-by-10 in the SCLK prescale control logic, ini-
tialized through control register 1. SCLK is connected to CLKR/CLKX on the
TCM29C13 to provide the transmit and receive master clock. CLKSEL on the
codec is tied to V¢ to select the 2.048-MHz master clock mode.

Framing pulses are generated by the TMS 320C17/E17 on the FR output
pin. The frequency of these pulses is set to 8 kHz by dividing the serial clock
(SCLK) by 256. This value is also initialized through control register 1. The
short FR framing pulses provide the codec with framing pulses for the fixed
data-rate mode. FR is input to both the FSX and FSR inputs on the codec.
The FR output causes simultaneous transmit and receive operations from the
serial port. The FSX input on the codec causes the device to transmit PCM
data on the next eight consecutive positive transitions of the serial-port clock
(SCLK). The FSR input on the codec causes the device to receive PCM data
on the next eight consecutive negative transitions of the serial-port clock
(SCLK). With this timing, the codec transmits and receives one 8-bit PCM
sample every 125 ps. ’
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+5V l_-L
+5V -5V Vec'ss
20 g 11 Me o
Vee ‘s Vem MC/PM
Fex =2 37 IFR  X2/CLKIN e
FSR -9—] T 120.48 MHz
CLKR/CLKX |l 34 lscLk X1 —
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CLKSEL |8 V(2,048 MH2)
SIGX/ASEL |12 v (u-LAW)
DCLKR |1 Vg (FIXED RATE)
TCM29C13
TMS320C17

Figure 6-4. Codec Interface for Standalone Serial Operation

The TMS 320C17/E17 transmits its PCM sample via the DX0 pin. The
sample is received by the TCM29C13 on the PCM IN pin. The TMS320 re-
ceives PCM samples on its DRO pin, which is the output of the PCM OUT pin
of the TCM29C13. With this setup, single-channel operation is realized with
the TMS 320C17/E17 . All data transmission occurs on channel 0, requir-
ing one IN instruction from port 1 to receive the PCM sample and one ouT
instruction to port 1 to send a sample to the codec.

In the serial interface configuration, u-2565 law companding is selected by
setting system control register bit 14 (CR14) to logic 0. The TCM29C13 is
put into the p-law companding mode by connecting the SIGX/ASEL pin to

Vee.

Linear A/D and D/A converters may also be interfaced to the
TMS 320C17/E17 through its parallel ports instead of using the serial port.

6-7



Hardware Applications - A/D and D/A Interface

6.3 A/D and D/A Interface
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The TMS320C10/C15 can be interfaced to A/D (analog-to-digital) and D/A
(digital-to-analog) converters to perform the necessary conversions. A mini-
mum of external circuitry is required.

Figure 6-5 shows an interface of the TLC0820 8-bit A/D converter to the
TMS320C10/C15. Since the control circuitry of the TLC0820 operates much
more slowly that the TMS320C10/C15, it cannot be directly interfaced. All
of the logic functions are implemented with one each of the following devices
from the 74ALS family of Advanced Low-power Schottky Logic:

74ALS679 12-bit address comparator

74LS74 Dual positive edge-triggered D-type flip-flops
74ALS465 Octal buffer with three-state output

74LS32 Quad two-input OR-gate.

+5 V
TMS320C10/C15 74ALE679
& P3
= P2
P1
PO s v
A11-A0 A12-A1 * TLC0820
74ALS465 MODE
Y Gt Vin—
DEN G2
D7 Y8 A8 D7
Dé Y7 A7 D6
D5 Y8 AB D5
D4 Y5 AS D4
D3 Y4 A4 D3
D2 Y3 A3 D2
D1 Y2 A2 D1
DO Y1 Al DO
WE
74L574
q
1D 1Q RD
2D 20 WR/RDY

Figure 6-5. A/D Converter to TMS320C10/C15 Interface
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An interface of the TLC7524 8-bit D/A converter to the TMS320C10/C15 is
shown in Figure 6-6. Due to the high-speed operation of the internal logic
circuitry of the TLC7524, the interface to the TMS320C10/C15 requires ex-
ternal logic circuitry to decode the address of the peripheral. Here a 74ALS679
12-bit address comparator is used.

+5V
TMS320C10/C15 74ALS679
[ P1
-[= P2
P3
P4
A11-A0 Ai2-Ai Viet
TLC7524 i
Y I I REF
RFB
. ouT1
WE WR A
ouT2 i— +
D7-DO DB7-DBO

tVg = - Vyer 226 , where D = digital Input

Figure 6-6. D/A Converter to TMS320C10/C15 Interface

For further information about the A/D and D/A converters shown in the fig-
ures, refer to the Linear Data Book.
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6.4 1/0 Ports

The TMS320C1x devices interface to input/output (I/0) devices through the
eight 16-bit parallel ports (see Section 3.7 for 1/0 functions). The I/0 space
is selected by the DEN signal for reads and the WE signal for writes. Each of the
eight I/0 ports is addressed by the three LSBs of the address bus with all other
address lines held low. The 1/0 ports share the 16 data lines.

The 1/O ports may be used for interfacing external circuitry such as data
memory expansion devices (see Section 6.1), A/D and D/A converters, syn-
chronization latches, or memory-mapped peripheral devices. Figure 6-7
shows a circuit that can be used to generate device select lines for each of the
individual port writes. A similar circuit may be used to enable 1/0 port reads.

TM8320C10 74ALS04 T4ALS137
WE 4ar vo pla—
v pé—
PAO |-2 1A y2 p3—
PA1 24g va b2
PA2 |40 aic va pl——
ys 10
L6 G1 Y6 D'g— /0
—5152 v7 bl DEVICE

Figure 6-7. 1/0 Port Interface Circuit

When interfacing the TMS320C1x to slower devices, a handshake interface
used in conjunction with the I/0 port interface may be desirable. Data to be
transferred may be stored in latches to be read by the TMS320C1x at a later
time. Handshaking may then be established using the interrupt, BIO, and XF
(TMS 320C17/E17 ) signals.
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6.5 Coprocessor Interface

The TMS320C17/E17 includes an option to use the parallel 1/0 interface ex-
clusively as a coprocessor interface. This option includes both the buffer logic
to communicate between two processors asynchronously, and the protocol
logic to protect against miscommunication. This port allows the
TMS320C17/E17 to act as either a master processor or a slave processor in a
multiprocessing system. The circuit also allows data to be transferred as either
8 or 16-bit values.

As a master processor, the TMS320C17/E17 writes to and reads from the co-
processor interface at wiii. This requires that the siave processor keep the re-
ceive buffer full and the transmit buffer empty. Figure 6-8 shows the
TMS320C17 as a master processor to a TMS70C42 (8-bit microcomputer).
As the internal CPU writes to the coprocessor interface, the TBLF (transmit
buffer latch full) signal is driven active low. This signals the TMS70C42 that
there is data to be read and that the 8-bit microcomputer must read that data
before the next write by the internal CPU. In Figure 6-8, the TBLF signal is tied
to an 1/0 bit on the 8-bit microcomputer so that the microcomputer can poll
the signal and act accordingly. This signal could also be tied to an interrupt
on the 8-bit microcomputer if this better suited system requirements. When
the internal CPU reads its buffer, it signals the 8-bit microcomputer that the
read buffer is empty by generating the RBLE (read buffer latch empty) signal.
This signals the microcomputer that it must reload the receive latch before the
next internal CPU access.

TMs3azoc? | o TMS70C42

MC

mc/Pm 2L

HITO |2

cLkour |8 17 { xTAL2
wR |31 1 m
RBLE |1 €1 a0
RD 32 ] A3
TBLF 490 81 A2
o7 H2 18 { p7
Lo |22 20 | pg
Los |1 211 pg
LDs4 |22 — 221 p4
o3 |23 23| e
o2 |24 24| 5,
o1 |28 26 | oy
Lo |28 27| 5o
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When the TMS320C17/E17 serves as a slave processor, data transfers are
controlled by the master processor. Figure 6-9 shows the TMS320C17 as a
slave to a TMS320C25 (a 16-bit microprocessor). When the: TMS320C25
writes to the TMS320C17, it causes an interrupt to the internal CPU. The CPU
must then read the information stored in the coprocessor interface before the
next write from the TMS320C25. When the TMS320C25 reads the transfer
latch of the coprocessor port, the internal CPU receives an active low BIO
signal. When transferring information to the master processor, the internal
CPU monitors the BIO line (using the BIOZ instruction) to determine when it
can reload the transmit latch. Note that a wait state may be required when
interfacing to the TMS320C25.

To support mixed 8/16-bit operation, the read buffer latch is cleared to 0
when read by the internal CPU.

TMS320C25 TMS320C17
_18 :
MSC j:)}-l
READY
Sl e = — wR
| —®
iNT1 TBLF
INT2 RBLE
MC
MC/PM
> HI/LO
Do Do
D1 D1
D2 D2
D3 D3
D4 D4
D5 D5
D6 D6
D7 D7
D8 D8
Do D8
D10 D10
D14 D11
D12 D12
D13 D13
D14 D14
D15 D15

Figure 6-9. TMS320C17 to TMS320C25 Interface
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6.6 System Applications

The TMS320C1x devices are commonly used in many system applications.
Several of these system applications are presented in this section, in a general
form, to illustrate basic approaches to system design using the TMS320C1x.
These applications include a 2400 bps modem, a speech synthesis system, and
a voice store-and-forward message center.

6.6.1 2400 bps Modem

The implementation of a 2400 bps modem is shown in Figure 6-10. This sys-
tem implements the functions of a V.22 bis modem using a TMS320A2400
and a TMS70A2400, which are masked ROM versions of the TMS320C17
and TMS7042, respectively. The TMS320A2400 performs all of the signal
processing functions, and the TMS70A2400 performs all of the interface pro-
tocol and contro! functions. The remaining system components perform ana-
log-to-digital (A/D) and digital-to-analog (D/A) conversions, PC bus
interface, telephone line interface, and filtering functions.

PCM OUT
T TCM29C13
nTA 8 v PCM IN CODEC
HOST I/F s N S
8250 UART s“};‘g)"'— T I E
v ATRTA] +
BEBUB)| gN74ALS245 A O 98
AN 2 L A
SN74ALS30 4 L h §35212A
0 E 0 BANDPASS
0 R 0 FILTER
+
SN74AS169
R6-232
7 —— ANALOG
(OPTIONAL) /
TELEPHONE
CONTROL LINE I/F le—sTELCO
(DAA)

Figure 6-10. 2400 bps Modem
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6.6.2 Speech Synthesis System

The system design for speech applications consists of a codec, a digital signal
processor supported with program and data memory, a speech data memaory,
and an optional host processor. A block diagram of this system, shown in
Figure 6-11, consists of the following components:

® Codec (TCM29C18)

(] Digital signal processor (TMS320C17)

®  Speech data ROM (TMS60C20) or EPROM (TMS27C56)
° Microcomputer host (TMS70C42).

The actual speech system is composed of the digital signal processor and the
codec. The microcomputer host is used to perform an end-product application
that calls upon the speech subsystem when needed, such as in the case of a
minicomputer and array processor system. The speech system can be used to
perform speech synthesis, vocoding, speech recognition, speaker verification,
DTMF decoding/encoding as well as many other algorithmically intensive
applications.

DISPLAY >

HOST

CODEC
CPU TM8320C17 "l Tcm2ecs [

KEYBOARD

INTERFACE

SPEECH
DATA ROMS
TMS60C20
OR

EPROMS
TMS27C56

Figure 6-11. Speech Synthesis System
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6.6.3 Voice Store-and-Forward Message Center

The voice store-and-forward message center consists of a TMS320C17-based
system interfaced to a phone line and a large storage area either on DRAMs
or computer disks depending on the application. Some applications of the
message center are: voice mail for a computer network, answering machines
for home use (see Figure 6-12), and a hand-held battery-operated voice
message pad for personal use. Typical algorithms required to perform the task
are: half-duplex ADPCM or subband coder, LPC synthesis, and DTMF
encoder/decoder. A combination of these algorithms will fit into the 4K on-
chip program ROM of the TMS320C17, requiring no external data memory.
Because the CPU utilization is less than 100 percent when performing any of
these tasks, other operations can also be done by the TMS320C17, such as
digital volume control, noise filtering, etc. A masked ROM version of the
TMS320C17 can provide a cost-effective solution.

CONTROL
SWITCHES

TMS320C 17 TEM29CTE e DAA

28-PIN

ABIC

LED TELEPHONE
DISPLAY LINE

DRAM
3 x TMS84256

Figure 6-12. Answering Machine






TMS320 FIRST-GENERATION
DIGITAL SIGNAL PROCESSORS

JANUARY 1987

® 160-ns Instruction Cycle TMS32010, TMS320C10
N PACKAGE
® 144/256-Word On-Chip Data RAM (TOP VIEW)
® 1.5K/4K-Word On-Chip Program ROM atpal A2/PA2
® 4K-Word On-chip Program EPROM AO/PAO []2 A3
(TMS320E15/E17) MC/MP []3 A4
RS [:4 A5
® EPROM Code Protection for Copyright Nt s AB
Security cikouT s A7
® 4K-Word Total External Memory at Full X1 17 A8
-Speed X2/CLKIN CS MEN
BIO o DEN
® 32-Bit ALU/Accumulator vss [ WE
® 16 x 16-Bit Multiplier with a 32-Bit Product gg E ch
® 0 to 16-Bit Barrel Shifter D10 [ A10
® Eight Input and Eight Output Channels 3112 0 32)1
® Dual-Channel Serial Port D13 E D1
(TMS320C17/E17) D14 [] D2
® 16-Bit Bidirectional Data Bus with 50-Mbps D15 O b3
Transfer Rate D7 [ D4
D6 [ Db
® Single 5-V Supply
® Packaging: 40-Pin DIP and 44-Pin PLCC
. . . . ® CMOS Technology:
® Commercial and Military Versions Available — TMS320C10-25 .. ... 160-ns cycle time
® NMOS Technology: — TMS320C10........ 200-ns cycle time
— TMS32010-25 ...... 160-ns cycle time — TMS320C15-25 .. ... 160-ns cycle time
— TMS32010 ......... 200-ns cycle time — TMS320C15...... .. 200-ns cycle time
— TMS32010-16 ...... 250-ns cycle time — TMS320E15 (EPROM) . 200-ns cycle time
— TMS320C17-25 ... .. 160-ns cycle time
— TMS320C17 ........ 200-ns cycle time

— TMS320E17 (EPROM) . 200-ns cycle time

This data sheet provides complete design documentation for all the first-generation devices of the TMS320
family. This facilitates the selection of the devices best suited for user applications by providing all
specifications and special features for each TMS320 member. This data sheet is divided into four major
sections: architecture, electrical specifications (NMOS and CMOS), timing diagrams, and mechanical data.
In each of these sections, generic information is presented first, followed by specific device information.
An index is provided for quick reference to specific information about a device.

escription

The TMS320 family of 16/32-bit single-chip digital signal processors combines the flexibility of a high-
speed controller with the numerical capability of an array processor, thereby offering an inexpensive
alternative to multichip bit-slice processors. The highly paralleled architecture and efficient instruction set
provide speed and flexibility to produce a MOS microprocessor family capable of executing 6.4 MIPS (million
instructions per second). The TMS320 family optimizes speed by implementing functions in hardware that
other processors implement through microcode or software. This hardware-intensive approach provides
the design engineer with processing power previously unavailable on a single chip.

This ins inf ion on prod in .
more than one phase of development. The status of '}
each device is indicated on the pagels) specifying its TEXAS
electrical characteristics. lN STRU M ENTS
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description (continued)

The TMS320 family consists of two generations of digital signal processors. The first generation contair
the TMS32010 and its spinoffs, as described in this data sheet. The TMS32020 and TMS320C25 ar
the second-generation processors, designed for higher performance. Many features are common amon
the TMS320 processors. Specific features are added in each processor to provide different cost/performanc
tradeoffs. Software compatibility is maintained throughout the family to protect the user’s investmer
in architecture. Each processor has software and hardware tools to facilitate rapid design.

introduction

The TMS32010, the first NMOS digital signal processor in the TMS320 family, was introduced in 198
Its powerful instruction set, inherent flexibility, high-speed number-crunching capabilities, and innovativ
architecture have made this high-performance, cost-effective processor the ideal solution to mar
telecommunications, computer, commercial, industrial, and military applications. Since that time, tr
TMS320C10, alow-power CMOS version of the industry-standard TMS32010, and other spinoff device
have been added to the first generation of the TMS320 family.

The TMS32010 microprocessor is available in three speed versions: TMS32010 (20 MHz), TMS32010-2
(25 MHz), and TMS32010-16 { 16 MHz). These devices are capable of executing a 16 x 16-bit multip!
with a 32-bit result in a single instruction cycle. On-chip data RAM of 144 words and on-chip prograi
ROM of 1.5K words are available. Full-speed execution of 4K words of off-chip program memory is als
possible. The TMS32010-25, a 160-ns instruction cycle time version of the TMS32010, is intended f
higher-performance applications that use off-chip program memory and require faster processor throughpt
(6.25 MIPS). The TMS32010-16 provides a low-cost alternative for DSP applications not requiring tr
maximum operating frequency of the TMS32010. The device provides a direct EPROM interface for cos
effective system development and modification. All of these devices are pin-for-pin and object-coc
compatible with the TMS32010 and its development tools.

The TMS320C10 is object-code and pin-for-pin compatible with the TMS32010. It is processed in CMO!
technology, achieving a power dissipation less than one-sixth that of the NMOS device. The lower powe
dissipation makes the TMS320C10 ideal for power-sensitive applications such as digital telephony ani
portable products. The TMS320C10-25, a 25-MHz version of the TMS320C10, has a 160-ns instructiol
cycle time and is well suited for high-performance DSP applications.

The TMS320C15 and TMS320E15 CMOS devices are object-code and pin-for-pin compatible with th:
TMS32010 and offer expanded on-chip RAM of 256 words and on-chip program ROM or EPROM of 4}
words. These devices allow the capability of upgrading performance and reducing power, board space
and system cost without hardware redesign. The TMS320C15 is also available in a 160-ns version, th:
TMS320C15-25.

{i’
Texas
INSTRUMENTS
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troduction (continued)

The TMS320C17 and TMS320E17 dedicated microcomputers also offer expanded on-chip RAM of 256
words and on-chip program ROM or EPROM of 4K words. These devices provide a dual-channel serial
interface, on-chip p-law/A-law companding hardware, and a serial port timer. In addition, a 16-bit
coprocessor interface provides a direct communication channel to common 4/8-bit microcomputers (no
glue logic required), and minimai iogic interface to most common 16/32-bit microprocessors. The devices
are object-code compatible with the TMS32010 and processed in CMOS technology. The TMS320C17 is also
available in a 160-ns version, the TMS320C17-25.

Table 1 provides an overview of the first generation of TMS320 processors with comparisons of memory,
1/0, cycle timing, power, package type, technology, and military support. For specific availability, contact
the nearest Tl sales office.

TABLE 1. TMS320 FIRST-GENERATION DEVICE OVERVIEW

MEMORY vot CYCLE TYP PACKAGE
DEVICE ON-CHIP OFF-CHIP TIME POWER TYPE
RAM ROM EPROM | EXPANSION | SER PAR CPX (ns) (mW) DIP PLCC

rMs32010-25 (NMOS) 144  1.6K - 4K - 8 x 16 - 160 900 40 -
rMs32010*% (NMOS) 144 15K - 4K - 8 x 16 - 200 900 . | 40
TMS32010+16 (NMOS) 144  1.5K — 4K - 8 x 16 — 250 900 40
TMS320C10-25  (CMOS) 144  1.5K — 4K - 8x 16 - 160 200 40 44
TMS320C108 (CMOS) 144  1.5K - 4K - 8 x 16 — 200 165 40 44
TMS320C15-25  (CMOS) 256 4K - 4K — 8x 16 — 160 250 40 44
TMS320C15% (CMOS) 256 4K - 4K — 8x 16 - 200 225 40 44
TMS320E158 (CMOS) 256 - 4K 4K - 8x 16 — 200 300 40 -
TMS320C17-25  (CMOS) 256 4K - - 2 6x 16 YES 160 275 40 44
TMS320C17 (CMOS) 256 4K — — 2 6x16 YES 200 250 40 44
TMS320E17 (CMOS) 256 4K - 2 6x 16 YES 200 325 40 -
SER = serial; PAR = parallel; CPX = coprocessor interface.

Military version available.
Military version planned; contact nearest Tl sales office for availability.

*p
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Key Features: TMS32010/C10

Instruction Cycle Timing:

— 160 ns (TMS32010-25/C10-25)
— 200 ns (TMS32010/C10)

— 250 ns (TMS32010-16)

144 Words of On-Chip Data RAM
1.5K Words of On-Chip Program ROM

External Memory Expansion up to 4K Words at
Full Speed

16 x 16-Bit Multiplier with 32-Bit Product
0 to 16-Bit Barrel Shifter

On-Chip Clock Oscillator

Single 5-V Supply

Device Packaging:
— 40-Pin DIP (all devices)
— 44-Lead PLCC (CMOS only)

Technology
— NMOS: TMS32010/10-16/10-25
— CMOS: TMS320C10/C10-25

Key Features: TMS320C15/E15

Instruction Cycle Timing:
— 160 ns (TMS320C15-25)
— 200 ns (TMS320C15/E15)

256 Words of On-Chip Data RAM

4K Words of On-Chip Program ROM
(TMS320C15/C15-25)

4K Words of On-Chip Program EPROM
(TMS320E15)

EPROM Code Protection for Copyright Security
External Memory up to 4K Words at Full Speed

Object-Code and Pin-For-Pin Compatible with
TMS32010

16 x 16-Bit Multiplier with 32-Bit Product
O to 16-Bit Barrel Shifter

On-Chip Clock Oscillator

Single 5-V Supply

Device Packaging:
— 40-Pin DIP (all devices)
— 44-Lead PLCC! (TMS320C15/C15-25)

CMOS Technology

TPLCC version planned, contact nearest Ti sales office for availability

+5V GND

t

DATA (16)
INTERRUPT 144-WORD RAM
)
1.5K-WORD ROM \N—————
I:— 32-BIT ALU/ACC
ADDRESS (12)
— MULTIPLIER X
L SHIFTERS —
+5V GND
DATA (16
INTERRUPT 256-WORD RAM . 16)
o 4K-WORD ————
ROM/EPROM
—[— 32-BIT ALU/ACC
= MULTIPLIER ADDRESS (12)
L SHIFTERS —
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Key Features: TMS320C17/E17
@® Instruction Cycle Timing:
— 160 ns (TMS320C17-25) *8V GND
— 200 ns (TMS320C17/E17) *
® 256 Words of On-Chip Data RAM INTERRUPT DATA (16)
DUAL-
® 4K Words of On-Chip Program ROM ] CHANNEL
(TMS320C17/C17-25) s:g"# SERIAL
® 4K Words of On-Chip Program EPROM TMS%Z:‘OC15 = INTERFACE
(TMS320E17) _[—— TMS320E15 ?.5?3:53? "
@ EPROM Code Protection for Copyright Security = #-LAW/A-LAW ADDRESS (31
HARDWARE
Object-Code Compatible with TMS32010 —
® Dual-Channel Serial Port for Full-Duplex Serial
Communication
® Serial Port Timer for Standalone Serial
Communications
® On-Chip Companding Hardware for p-law/A-law
PCM Conversions
® 16-Bit Coprocessor Interface for Common
4/8/16/32-Bit Microcomputers/Microprocessors
® Device Packaging:
— 40-Pin DIP (all devices)
— 44-Lead PLCCT (TMS320C17/C17-25)
® CMOS Technology

tPLCC version planned; contact nearest Tl sales office for availability.
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TMS320 FIRST-GENERATION
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architecture

The TMS320 family utilizes a modified Harvard architecture for speed and flexibility. In a strict Harvard
architecture, program and data memory lie in two separate spaces, permitting a full overlap of instruction
fetch and execution. The TMS320 family’s modification of the Harvard architecture allows transfers
between program and data spaces, thereby increasing the flexibility of the device. This modification permits
coefficients stored in program memory to be read into the RAM, eliminating the need for a separate
coefficient ROM. It also makes available immediate instructions and subroutines based on computed values.

32-bit ALU/accumulator

The TMS320 first-generation devices contain a 32-bit ALU and accumulator for support of double-precision,
two’s-complement arithmetic. The ALU is a general-purpose arithmetic unit that operates on 16-bit words
taken from the data RAM or derived from immediate instructions. In addition to the usual arithmetic
instructions, the ALU can perform Boolean operations, providing the bit manipulation ability required of
a high-speed controller. The accumulator stores the output from the ALU and is often an input to the ALU.
It operates with a 32-bit wordlength. The accumulator is divided into a high-order word (bits 31 through
16) and a low-order word (bits 15 through 0). Instructions are provided for storing the high- and low-order
accumulator words in memory.

shifters

Two shifters are available for manipulating data. The ALU barrel shifter performs a left-shift of O to 16
places on data memory words loaded into the ALU. This shifter extends the high-order bit of the data word
and zero-fills the low-order bits for two’s-complement arithmetic. The accumulator parallel shifter performs
a left-shift of 0, 1, or 4 places on the entire accumulator and places the resulting high-order accumulator
bits into data RAM. Both shifters are useful for scaling and bit extraction.

16 x 16-bit parallel multiplier

The multiplier performs a 16 x 16-bit two’s-complement multiplication with a 32-bit result in a single
instruction cycle. The multiplier consists of three units: the T Register, P Register, and multiplier array.
The 16-bit T Register temporarily stores the multiplicand; the P Register stores the 32-bit product. Multiplier
values either come from the data memory or are derived immediately from the MPYK (multiply immediate)
instruction word. The fast on-chip multiplier allows the device to perform fundamental operations such
as convolution, correlation, and filtering.

data and program memory

Since the TMS320 devices use a Harvard architecture, data and program memory reside in two separate
spaces. The first-generation devices have 144 or 256 words of on-chip data RAM and 1.5K or 4K words
of on-chip program ROM. On-chip program EPROM of 4K words is provided on the TMS320E15/E17. The
EPROM cell utilizes standard PROM programmers and is programmed identically to a 64K CMOS EPROM
(TMS27C64).

program memory expansion

The first-generation devices are capable of executing up to 4K words of external memory at full speed
for those applications requiring external program memory space. This allows for external RAM-based
systems to provide multiple functionality. The TMS320C17/E17 provides no memory expansion capability.
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microcomputer/microprocessor operating modes (TMS32010/C10/C15)

The TMS32010/C10 and TMS320C15 devices offer two modes of operation defined by the state of the
MC/MP pin: the microcomputer mode (MC/MP = 1) or the microprocessor mode (MC/MP = 0). In the
microcomputer mode, on-chip ROM is mapped into the memory space with up to 4K words of memory
available. In the microprocessor mode, all 4K words of memory are external.

interrupts and subroutines

The TMS320 first-generation devices contain a four-level hardware stack for saving the contents of the
program counter during interrupts and subroutine cails. instructions are available for saving the device's
complete context. PUSH and POP instructions permit a level of nesting restricted only by the amount of
available RAM. The interrupts used in these devices are maskable.

input/output

The 16-bit parallel data bus can be utilized to perform I/0 functions in two cycles. The I/O ports are addressed
by the three LSBs on l"ﬁ address lines. In addition, a polling input for bit test and jump operations (BIO)
and an interrupt pin (INT) have been incorporated for multitasking.

serial port (TMS320C17/E17)

Two of the /O ports on the TMS320C17/E17 are dedicated to the serial port and companding hardware. 1/0
port 0 is dedicated to control register 0, which controls the serial port, interrupts, and companding hardware.
1/O port 1 accesses control register 1, as well as both serial port channels, and the companding hardware.
The six remaining I/0O ports are available for external parallel interfaces.

The dual-channel serial port is capable of full-duplex serial communication and offers direct interface to
combo-codecs. Receive and transmit registers that operate with 8-bit data samples are |/O-mapped. Either
internal or external framing signals for serial data transfers are selected through the system control register.
The serial port clock provides the bit timing for transfers with the serial port, and may be either an input
or output. A framing pulse signal provides framing pulses for combo-codec circuits, an 8-kHz sample clock
for voice-band systems, or a timer for control applications.

companding hardware (TMS320C17/E17)

On-chip hardware enables the TMS320C17/E17 to compand (COMpress/exPAND) data in either u-law or A-law
format. The companding logic operation is configured via the system control register.

Data may be companded in either a serial mode for operation on serial port data (converting between sign-
magnitude linear and logarithmic PCM) or a parallel mode for computation inside the device. The
TMS320C17/E17 allows the hardware companding logic to operate with either sign-magnitude or two’s-
complement numbers.

coprocessor port (TMS320C17/E17)

The coprocessor port on the TMS320C17/E17 provides a direct connection to most 4/8-bit microcomputers
and 16/32-bit microprocessors. The port is accessed through I/0 port 5 using IN and OUT instructions.
The coprocessor interface allows the device to actas a peripheral (slave) microcomputer to a microprocessor,
or as a master to a peripheral microcomputer. The 16 data lines are used for the 6 parallel 16-bit 1/0 ports.
In the coprocessor mode, the 16-bit parallel port is reconfigured to operate as a 16-bit latched bus interface.
For peripheral transfer, an 8-bit or 16-bit length of the coprocessor port can be selected.

i
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instruction set

A comprehensive instruction set supports both numeric-intensive operations, such as signal processing,
and general-purpose operations, such as high-speed control. All of the first-generation devices are object-
code compatible and use the same 60 instructions. The instruction set consists primarily of single-cycle
single-word instructions, permitting execution rates of more than six million instructions per second. Only
infrequently used branch and /0 instructions are multicycle. Instructions that shift data as part of an
arithmetic operation execute in a single cycle and are useful for scaling data in parallel with other operations.

Three main addressing modes are available with the instruction set: direct, indirect, and immediate
addressing.

direct addressing

In direct addressing, seven bits of the instruction word concatenated with the 1-bit data page pointer form
the data memory address. This implements a paging scheme in which the first page contains 128 words,
and the second page contains up to 128 words.

indirect addressing

Indirect addressing forms the data memory address from the least-significant eight bits of one of the two
auxiliary registers, ARO and AR1. The Auxiliary Register Pointer (ARP) selects the current auxiliary register.
The auxiliary registers can be automatically incremented or decremented and the ARP changed in parallel
with the execution of any indirect instruction to permit single-cycle manipulation of data tables. Indirect
addressing can be used with all instructions requiring data operands, except for the immediate operand
instructions.

immediate addressing

Immediate instructions derive data from part of the instruction word rather than from the data RAM. Some
useful immediate instructions are multiply immediate (MPYK), load accumulator immediate (LACK), and
load auxiliary register immediate (LARK).

instruction set summary

Table 2 lists the symbols and abbreviations used in Table 3, the instruction set summary. Table 3 contains
a short description and the opcode for each TMS320 first-generation instruction. The summary is arranged
according to function and alphabetized within each functional group.

TABLE 2. INSTRUCTION SYMBOLS

SYMBOL MEANING
ACC Accumulator
D Data memory address field
! Addressing mode bit
K Immediate operand field
PA 3-bit port address field
R 1-bit operand field specifying auxiliary register
S 4-bit left-shift code
X 3-bit accumulator left-shift field

{i’
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TABLE 3. TMS320 FIRST-GENERATION INSTRUCTION SET SUMMARY

ACCUMULATOR INSTRUCTIONS

OPCODE
MNEMONIC DESCRIPTION CYN;'ES Wgzbs INSTRUCTION REGISTER
1514131211109 8 7 6 5 4 3 2 1 0

ABS Absolute value of accumulator 1 1 o111111110001000
ADD Add to accumulator with shift 1 1 0000 4—sSs¥%» | ¢&—D—P
ADDH Add to high-order accumulator bits 1 1 011000006 ! ¢«—D—>
ADDS Add to acc 1 1 01100001 | 4&—D—>

extension
AND AND with accumulator 1 1 01111001 | €&—D—P»
LAC Load accumulator with shift 1 1 0010 «—S» | «—D—P
LACK Load accumulator immediate 1 1 01111110 ¢&——FK—»
OR OR with accumulator 1 1 01111010 | ¢&——D—>»
SACH Store high-order accumulator bits with 1 1 01011 &x» | ¢&——D—P

shift
SACL Store low-order accumulator bits 1 1 01010000 | €—D—»
suB Subtract from accumulator with shift 1 1 0001 &—S®» | «—D—P»
SUBC Conditional subtract (for divide) 1 1 01100100 | «&——D—P
SUBH Subtract from high-order accumulator bits 1 1 01100010 !| 4«&4——D—»
suBs Subtract from accumulator with no sign 1 1 o1100011 | 4&—D—»

extension
XOR Exclusive OR with accumulator 1 1 01111000 | €«——D—¥
ZAC Zero accumulator 1 1 0111 i11110001001
ZALH Zero accumulator and load high-order bits 1 1 01100101 | 4¢&——D—>
ZALS Zero accumulator and load low-order bits 1 1 o1100110 | €&——D—»

with no sign extension

AUXILIARY REGISTER AND DATA PAGE POINTER INSTRUCTIONS
No. NoO. OPCODE
MNEMONIC DESCRIPTION INSTRUCTION REGISTER
CYCLES | WORDS
1514131211109 8 7 6 5 4 3 2 1 O

LAR Load auxiliary register 1 1 0011100R | 4&4——D—>
LARK Load auxiliary register immediate 1 1 0111000R €&———K—»
LARP Load auxiliary register pointer immediate 1 1 011010001 00O0O0O0OK
LDP Load data memory page pointer 1 1 co1101111 | 4&——D—P
LDPK Load data memory page pointer immediate 1 1 011011 10000O0O0O0O0K
MAR Modify auxiliary register and pointer 1 1 01101000 | €&——D—>
SAR Store auxiliary register 1 1 0011000R | €&——D—¥»
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TABLE 3. TMS320 FIRST-GENERATION INSTRUCTION SET SUMMARY (CONTINUED)

BRANCH INSTRUCTIONS
NO. NO. OPCODE
MNEMONIC DESCRIPTION cvcies | worps INSTRUCTION REGISTER
1514131211109 8 7 6 56 4 3 2 1 0
B Branch unconditionally 2 2 117111001 00000000
0 0 0 0O & BRANCH ADDRESS —p
BANZ Branch on auxiliary register not zero 2 2 111 101000000O0O00O00O0
0 0 0 0O 4——BRANCH ADDRESS —
BGEZ Branch if accumulator = 0 2 2 111 1110100000000
0 0 0 0O <4— BRANCH ADDRESS —
BGZ Branch if accumulator > 0 2 2 117111 10000000000
0 0 0 O €——BRANCH ADDRESS —
BIOZ Branch on BIO = 0 2 2 T111011000000000
0 0 0 0 4——BRANCH ADDRESS ——
BLEZ Branch if accumulator < 0 2 2 11111011 00000000
0 0 0 0O 4— BRANCH ADDRESS —p
BLZ Branch if accumulator < 0 2 2 1111101000000000
0O 0 0 0O 44— BRANCH ADDRESS —
BNZ Branch if accumulator # 0 2 2 111111 1000000000
: 0 0 0 0O 44— BRANCH ADDRESS —
BvV Branch on overfiow 2 2 1T1110101000000O0O00O0
0 0 0 O 4——BRANCH ADDRESS —p
Bz Branch if accumulator = 0 2 2 1111111 100000000
0O 0 0 O 4——BRANCH ADDRESS —
CALA Call subroutine from accumulator 2 1 0111111110001 100
CALL Call subroutine immediately 2 2 111110000000O0O0O0O0
0 0 0 0O 44— BRANCH ADDRESS ——p
RET Return from subroutine or interrupt routine 2 1 0111111110001 101
T REGISTER, P REGISTER, AND MULTIPLY INSTRUCTIONS
NO. NO. OPCODE
MNEMONIC DESCRIPTION cycies | worps INSTRUCTION REGISTER
1514131211109 8 7 6 5 4 3 2 1 0
APAC Add P register to accumulator 1 1 0111111110001 1 11
LT Load T register 1 1 01101010 ! 4&——D—p
LTA LTA combines LT and APAC into one 1 1 01101100 | 4——D—p
instruction
LTD LTD combines LT, APAC, and DMOV into 1 1 01101011 | 4&——D—Pp
one instruction
MPY Multiply with T register, store product in 1 1 01101101 | €«&——D—bp
P register
MPYK Multiply T register with immediate 1 1 100 ¢&——m———K——-—p
operand; store product in P register
PAC Load accumulator from P register 1 1 O111111110001110
SPAC Subtract P register from accumulator 1 1 011111111001 0000
+p
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TABLE 3. TMS320 FIRST-GENERATION INSTRUCTION SET SUMMARY (CONCLUDED)

CONTROL INSTRUCTIONS

OPCODE
MNEMONIC DESCRIPTION CVNC?L.ES Wﬁ(;.bs INSTRUCTION REGISTER
1514131211109 8 7 6 5 4 3 2 1 0O
DINT Disable interrupt 1 1 o11111111000000N"1
EINT Enable interrupt 1 1 o111111110000010
LST Load status register 1 1 01111011 | €——D—P
NOP No operation 1 1 0111111110000000
POP POP stack to accumulator 2 1 01111111 10011101
PUSH PUSH stack from accumulator 2 1 0111111110011 100
ROVM Reset overflow mode i 1 1111111100061 01TO0
SOVM Set overflow mode 1 1 o111111110001011
SST Store status register 1 1 011%+1100 1| 4€—D—b
1/0 AND DATA MEMORY OPERATIONS
NO. NO. OPCODE
MNEMONIC DESCRIPTION INSTRUCTION REGISTER
CYCLES | WORDS
1514131211109 8 7 6 5 4 3 2 1 0

DMOV Copy contents of data memory location 1 1 011010011 €¢——D—»

into next higher location
IN Input data from port 2 1 01000 4PA» | 4———D—P
ouT Output data to port 2 1 01001 €4PAP» | 4¢———D——P
TBLR - Table read from program memory to data 3 1 011001111 4——D—»

RAM
TBLW Table write from data RAM to program 3 1 o1111101"!| 4&—D—Pp

memory

development support

Texas Instruments offers an extensive line of development support products to assist the user in all aspects
of TMS320 first-generation-based design and development. These products range from development and
application software to complete hardware development and evaluation systems such as the XDS/22.
Table 4 lists the development support products for the first-generation TMS320 devices.

System development begins with the use of the Evaluation Module (EVM) or Emulator (XDS). These
hardware tools allow the designer to evaluate the processor’s performance, benchmark time-critical code,
and determine the feasibility of using a TMS320 device to implement a specific algorithm.

Software and hardware can be developed in parallel by using the macro assembler/linker and simulator
for software development and the XDS for hardware development. The assembler/linker translates the
system’s assembly source program into an object module that can be executed by the simulator, XDS,
or EVM. The XDS provides realtime in-circuit emulation and is a powerful tool for debugging and integrating
software and hardware modules.

Additional support for the TMS320 products consists of extensive documentation and three-day DSP design
workshops offered by the Tl Regional Technology Centers (RTCs). The workshops provide hands-on
experience with the TMS320 development tools. Refer to the TMS320 Family Development Support.
Reference Guide for further information about TMS320 development support products and DSP workshops.
When technical questions arise regarding the TMS320, contact the Texas Instruments Regional Technology
Centers (see last pages).
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TABLE 4. TMS320 FIRST-GENERATION SOFTWARE AND HARDWARE SUPPORT

documentation support

SOFTWARE TOOLS

PART NUMBER

Macro Assembler/Linker
VAX VMS
TI/IBM MS/PC-DOS

Simulator
VAX VMS
TI/IBM MS/PC-DOS

Digital Filter Design Package (DFDP)
Tt PC MS-DOS
1BM PC PC-DOS

DSP Software Library
VAX VMS
TI/IBM MS/PC-DOS

TMDS3240210-08
TMDS3240810-02

TMDS3240211-08
TMDS3240811-02

DFDP-TIOO1
DFDP-IBM0OO1

TMDC3240212-18
TMDC3240812-12

HARDWARE TOOLS

PART NUMBER

Evaluation Module (EVM)
Analog Interface Board (AIB)
XDS/22 Emulator

XDS/22 Upgrade
Factory Upgrade
Customer Upgrade

EPROM Programmer Adaptor Socket

TMS320 Design Kit

RTC/EVM320A-03
RTC/EVM320C-06
TMDS3262211

TMDS3282215
TMDS3282216

RTC/PGM320A-06
TMS320DDK

Extensive documentation supports the first-generation TMS320 devices from product announcement
through applications development. The types of documentation include data sheets with design
specifications, complete user’s guides, and 750 pages of application reports published in the book Digital
Signal Processing Applications with the TMS320 Family.

A series of DSP textbooks is being published by Prentice-Hall and John Wiley & Sons to support digital
signal processing research and education. The TMS320 newsletter, Details on Signal Processing, is published
quarterly and distributed to update TMS320 customers on product information. The TMS320 DSP bulletin
board service provides access to large amounts of information pertaining to the TMS320 family.

Refer to the TMS320 Family Development Support Reference Guide for further information about TMS320
documentation. To receive copies of first-generation TMS320 literature, call the Regional Technology Centers
(see.iast pages).
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TMS$32010, TMS32010-25, TMS32010-16
TMS320C10, TMS320C10-25
TMS320C15, TMS320C15-25, TMS320E15

description TMS32010, TMS320C10
TMS320C15, TMS320E15

Since the TMS32010 was the first digital signal N/JD PACKAGE

processor in the TMS320 family, its architecture (TOP VIEW)
has served as the basis from which first-
generation spinoff devices have evolved. The A1/PA1 A2/PA2
TMS320C10 is a low-power CMOS version of AO/PAO A3
the TMS32010 and identical to it. The MC/MP A4
TMS320C15/E15 is object-code and pin-for-pin RS A5
compatible with the TMS32010 and offers INT AB
expanded on-chip RAM and ROM or EPROM. CLKOl)J(T A7
1 A
TMS320C10, TMS320C15 X2/CLKIN msgf\j
FN PACKAGE BIO DEN
(TOP VIEW) Vss WE
£55,8 oo a°
ZpS29I2I<22 D10 A10
=5 D11 A1
cLkouTf}7 A7 D12 Do
X1 A8 D13 D1
X2/CLKIN[]9 MEN D14 D2
B0 BEN D15 D3
NC WE D7 D4
vss vce D6 b5
D8 A9
D9 A10
D10 A1l
D11 o]0}
D12 2 D1
1819202122 2324 2526 27 28

WO SO~ OWTON®V
Hhe——0OOOQOQD0O WV
>000 >

PIN NOMENCLATURE (TMS32010, TMS320C10, TMS320C15, TMS320E15T)

NAME yo/z* DEFINITION
A11-A0/PA2-PAO [e] External address bus. 1/0 port address multiplexed over PA2-PAO.
BIO I External polling input
CLKOUT (o] System clock output, % crystal/CLKIN frequency
D15-DO 1/0/Z2 16-bit parallel data bus
DEN o Data enable for device input data on D15-DO
NT | External interrupt input
MC/MP 1 Memory mode select pin. High selects microcomputer mode. Low selects microprocessor mode.
MEN (o] Memory enable indicates that D15-DO will accept external memory instruction.
NC - No connection; make no external connection to this pin.
RS | Reset for initializing the device
Vce | +5 V supply
Vss | Ground
WE (o] Write enable for device output data on D15-DO
X1 o] Crystal output for internal oscillator
X2/CLKIN | Crystal input for internal oscillator or external system clock input

TSee EPROM programming section.
#Input/Output/High-impedance state.
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TMS32010, TMS32010-25, TMS32010- 16
TMS320C10, TMS320C10-25
TMS320C15, TMS320C15-25, TMS320E15

functional block diagram (TMS32010, TMS320C10, TMS320C15, TMS320E15)

X1
CLKOUT X2/CLKIN
A 12188
i y
WE —ae—]{ L
J— MuUX 4116
DEN —e— &
MEN —e— 3 1£12
B «
80 —» £ PC (12) ] INSTRUCTION
MC/MP —p] 8
INT ——] 12, 12| rrosram
RS — 1 v & | ROM/EPROM
9 (1.5K/4K
— STACK < WORDS)
x < 4x12
A11-A0/ 5
PA2-PAO Ll 16
‘/3
PROGRAM BUS D15-DO
pa
( 16 16
Z
4 16
A 16 s
16
\ 4 ¥ 1 Y
T
ARO (16) Y T(16)
e | i (o]
AR1 (16) 16
L SHIFTER MULTIPLIER | ¢
As P (0-16)
L
s 8 P(32)
Mux 7 P A 32
732 L/
Y
8
S MUX7
ADDRESS ——j A 32
y
DATA RAM
LEGEND: WORDS) ALU (32)
/
ACC= Accumulator DATA /y32 4 32
ARP = Auxiliary register pointer 4
ARO = Auxiliary register 0 s | ACC (32)
AR1 = Auxiliary register 1
DP = Data page pointer 32
PC = Program counter //16 ,’32
P = P register
T = Tregister | swrrer0 1@ ] 16 4
164
DATA BUS
L
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TMS320C17
TMS320C17-25
TMS320E17

description

The TMS320C17, like the TMS320C15, has
256 words of on-chip data RAM and 4K words
of on-chip program ROM. The TMS320C17 is
object-code compatible with the TMS32010 The
TMS320C17 provides a dual-channel serial port
designed specifically to interface to two combo-
codecs. A 16-bit coprocessor interface is also
provided for interfacing tc common

4/8/16/32-bit microcomputers/microprocessors.

architecture
The TMS320C17 consists of five major
functional units: the TMS320C15

microcomputer, a system control register, a full-
duplex dual-channel serial port, companding
hardware, and a coprocessor port.

TMS320C17, TMS320E17
N/JD PACKAGE
(TOP VIEW)

PA1/RBLE
PAO/HI/LO

® NG WN -

X2/CLKIN
BIO

Vss
D8/LD8
D9/LDY
D10/LD10
D11/LD11
D12/LD12
D13/LD13
D14/LD14
D15/LD15
D7/LD7
D6/LD6

PIN NOMENCLATURE (TMS320C17. TMS320E177)

] FSR
[] FSX
[ FR

M ox1
(] DX0
[] scLk
(] DR1

o 32| DEN/RD
10 31[] WE/WR
1" 30]VCC
12 29[J DRO

[] xF

] MC/PM
[]1D0/LDO
[)D1/LD1
[]D2/LD2
[ D3/LD3
] D4/LD4
[ D5/LD5

(] PA2/TBLF

NAME yo/z* DEFINITION
BIO | External polling input
CLKOUT o] System clock output, % crystal/CLKIN frequency
D15/LD15-DO/LDO 1/0/Z 16-bit parallel data bus/data lines for coprocessor latch
DEN/RD 110/Z Data enable for device input data/external read for output latch
DR1, DRO | Serial-port receive-channel inputs
DX1, DXO Q/z Serial-port transmit-channel outputs
EXINT I External interrupt input
FR [e] Internal serial-port framing output
FSR | External serial-port receive framing input
FSX ! External serial-port transmit framing input
MC | Microcomputer select (must be same state as MC/PM)
MC/PM 1 Microcomputer/peripheral coprocessor select {must be same state as MC)
PAO/HI/LO 1/0/Z 1/0 port address output/latch byte select pin
PA1/RBLE o] 1/0 port address output/receive buffer latch empty flag
PA2/TBLF o 1/0 port address output/transmit buffer latch full flag
RS | Reset for initializing the device
SCLK 1/0/Z Serial-port clock
Vee ! +5 V Supply
Vsgs [ Ground
WE/WR 10 Write enable for device output data/external write for input latch
X1 o] Crystal output for internal oscillator
X2/CLKIN 1 Crystal input for internal oscillator or external oscillator system clock input
XF [e] External-flag output pin

1See EPROM programming section.
*Input/Output/High impedance state.
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TMS326C17
TMS320C17-25
TMS320E17

functional block diagram (TMS320C17, TMS320E17)
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TMS320C17
TMS320C17-25
TMS320E17

architecture (continued)

Three of the I/O ports are used by the serial port, companding hardware, and the coprocessor port. Their
operation is determined by the 32 bits of the system control register (see Table 7 for the TMS320C17
control register definitions). Control register O, accessed through port 0, consists of the lower 16 register
bits (CR15-CRO), and is used to control the interrupts, serial port connections, and companding hardware
operation. Port 1 accesses control register 1, consisting of the upper 16 control bits (CR31-CR16), as
well as both serial port channels, the companding hardware, and the coprocessor port channels.
Communication with the control register is via IN and OUT instructions to ports O and 1.

interrupts fully support the TMS320C 17 serial port interface. Four maskable interrupts {(EXINT, FR, FSX, and
FSR) are mapped into I/O port 0 via control register 0. When disabled, these interrupts may be used as single-
bit logic inputs polled by software.

serial port

The dual-channel serial port is capable of full-duplex serial communication and offers direct interface to
two-combo-codecs. Two receive and two transmit registers are mapped into 1/0 port 1, and operate with
8-bit data samples. Internal and external framing signals for serial port transfers (MSB first) are selected
via the system control register. The serial port clock, SCLK, provides the bit timing for transfers with the
serial port, and may be either an input or output. As an input, an external clock provides the timing for
data transfers and framing pulse synchronization. As an output, SCLK provides the timing for standalone
serial communication and is derived from the TMS320C17 system clock, X2/CLKIN and system control
register bits CR27-CR24. See Table 6 for the available divide ratios.

The internal framing (FR) pulse frequency is derived from the serial port clock (SCLK) and system control
register bits CR23-CR16. This framing pulse signal provides framing pulses for combo-codecs, for a sample
clock for voice-band systems, or for a timer used in control applications.

TABLE 6. SERIAL CLOCK (SCLK) DIVIDE RATIOS (X2/CLKIN = 20.48 MHZ)}

CR27 CR26 CR25 CR24 DIVIDE RATIO SCLK FREQUENCY UNIT
0 0 0 0 32 0.640 MHz
o 0 0 1 28 0.731 MHz
0 0 1 0 24 0.853 MHz
o] 1 4] [ 20 1.024 MHz
1 0 0 0 16 1280 MHz
1 0 0 1 14 1.463 MHz
1 0 1 o 12 1706 MHz
1 1 0 ° 10 2.048 Mhz

p-law/A-law companding hardware

The TMS320C17 features hardware companding logic than can operate in either p-law or A-law format
with either sign-magnitude or two's-complement numbers. Data may be companded in either a serial mode
for operation on serial port data or a parallel mode for computation inside the device. The companding
logic operation is selected through CR14. No bias is required when operating in two’s complement. A bias
of 33 is required for sign magnitude in p-law companding. Upon reset, the device is programmed to operate
in sign-magnitude mode. This mode can be changed by modifying control bit 29 (CR29) in control register 1.

In the serial mode, sign-magnitude linear PCM (13 magnitude bits plus 1 sign bit for u-law format or 12
magnitude bits plus 1 sign bit for A-law format) is compressed to 8-bit sign-magnitude logarithmic PCM
by the encoder and sent to the transmit register for transmission on an active framing pulse. The decoder
converts 8-bit sign-magnitude log PCM from the serial port receive registers to sign-magnitude linear PCM.

In the parallel mode, the serial port registers are disabled to allow parallel data from internal memory to
be encoded or decoded for computation inside the device. In the parallel encode mode, the encoder is
enabled and a 14-bit sign-magnitude value written to port 1. The encoded value is returned with an IN
instruction from port 1. In the parallel decode mode, the decoder is enabled and an 8-bit sign-magnitude
log PCM value written to port 1. On the successive IN instruction from port 1, the decoded value is returned.
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TABLE 7. CONTROL REGISTER CONFIGURATION

FR ~—————PORT 1 PORT 0 ——— &
PULSE

WIDTH FRAME COUNTER MODULUS INTERRUPT MASK BITS
e A

[31]30 29,28,27'26'25]24]23'22]21I2OI19I1BJ17|16I15'14]13]12'11,10' 9 I 8 l 7 l 6 I 5 l 4 l 3 I 2 I 1r;]
——~ —\/__/ "/
1o SERIAL CLOCK SERIAL-PORT CONFIGURATION INTERRUPT FLAGS
CONTROL  PRESCALE CONTROL COMPANDING HARDWARE CONTROL
RESERVED
BIT DESCRIPTION AND CONFIGURATION
0 EXINT interrupt flag’
1 FSR interrupt flag?
2 FSX interrupt flag’
3 FR interrupt flagt
4 EXINT interrupt enable mask. When set to logic 1, an interrupt on EXINT activates device interrupt circuitry.
5 FSR interrupt enable mask. Same as EXINT control.
6 FSX interrupt enable mask. Same as EXINT control.
7 FR interrupt enable mask. Same as EXINT control.
. . 0 = port 1 connects to either serial-port registers or companding hardware.
8 Port 1 configuration control:
1 = port 1 accesses CR31-CR16.
= serial-port data transfers controlled by active FR.
9 External framing enable: . P v fv —
w = serial-port data transfers controlled by active FSX/FSR.
10 XF external logic output flag latch .
= parallel companding mode; serial port disabled.
11 Serial-port enable: P A P . 9 X por X
= serial companding mode; serial port registers enabled.
0 = disabled.
12 w-law/A-law encoder enable: 3 X
1 = data written to port 1 is u-law or A-law encoded.
13 law/A-law decod ble: O = disabled.
-law. - e n e
s aw oder ena 1 = data read from port 1 is u-law or A-law decoded.
= companding hardware performs u-law conversion.
14 u-law or A-law encode/decode select: ) .
= companding hardware performs A-law conversion.
. O = SCLK is an output, derived from the prescaler in timing logic.
15 Serial clock control: . . . . . .
1 = SCLK is an input that provides the clock for serial port and frame counter in timing logic.
23-16 Frame counter modulus. Controls FR frequency = SCLK/(CNT + 2) where CNT is binary value of CR23-CR16.%
27-24 SCLK prescale control bits. (See Table 6 for divide ratios.)
28 FR pul dth trol 0 = fixed-data rate; FR is 1 SCLK cycle wide.
Se-wi controi:
pu ' 1 = variable-data rate; FR is 8 SCLK cycles wide.
= sign-magnitude companding
29 Two’s-complement u-law/A-law conversion enable: ,
= two’s-complement companding
30 8/16-bit | h " lect O = 8-bit byte length
- t sor mode select:
"t length coprocessor mo 1 = 16-bit word length
31 Reserved for future expansion. Should be set zero.

1 Interrupt flag is cleared by writing a logic 1 to the bit with an OUT instruction to port O.
* All ones in CR23-CR16 indicate a degenerative state and should be avoided. Bits are operational whether SCLK is an input or an
output. CNT must be greater than 7.
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p-law/A-law companding hardware (continued)

The following diagram shows a TMS320C17 interface to two codecs as used for u-law or A-law companding

format.

TCM29C13
DXO0 PCM IN —=— ANALOG OUT
A Vn Sons ALIT
_L T PRO PCM OUT | o ANALOG IN
= ’\s" SCLK | CLKR/X
+5V Vee 3 FR FSX
mc 2 ‘
] [FSR
MC/PM ¢
1 TCM29C13
X2
L 7 bxi PCMIN  |»—ANALOG OUT
—
Tx DR1 PCM OUT | o ANALOG IN
CLKR/X
@——F5X

coprocessor port

The coprocessor port, accessed through 1/0 port 5 using IN and OUT instructions, provides a direct
connection to most 4/8-bit microcomputers and 16/32-bit microprocessors. The coprocessor interface
allows the TMS320C17 to act as a peripheral (slave) microcomputer to a microprocessor, or a master
to a peripheral microcomputer such as TMS7042. The coprocessor port is enabled by setting MC/PM and
MC low. The microcomputer mode is enabled by setting these two pins high. (Note that MC/PM = MC

is undefined.) The 16 data lines are used for the 6 parallel 16